
The Trust-based Interactive

Partially Observable

Markov Decision Process

THESIS

Richard Seymour, Captain, USAF

AFIT/GCS/ENG/09-09

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCS/ENG/09-09

The Trust-based Interactive

Partially Observable

Markov Decision Process

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Richard Seymour, B.S.O.R.

Captain, USAF

June 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

AFIT/GCS/ENG/09-09

The Trust-based Interactive

Partially Observable

Markov Decision Process

Richard Seymour, B.S.O.R.

Captain, USAF

Approved:

/signed/ 10 June 2009

Gilbert L. Peterson, PhD date

/signed/ 10 June 2009

Gary B. Lamont, PhD date

/signed/ 10 June 2009

LtCol. Brett J. Borghetti date

/signed/ 10 June 2009

Maj. Michael J. Mendenhall date

AFIT/GCS/ENG/09-09

Abstract

Cooperative agent and robot systems are designed so that each is working to-

ward the same common good. The problem is that the software systems are extremely

complex and can be subverted by an adversary to either break the system or poten-

tially worse, create sneaky agents who are willing to cooperate when the stakes are

low and take selfish, greedy actions when the rewards rise. This research focuses on

the ability of a group of agents to reason about the trustworthiness of each other

and make decisions about whether to cooperate. A trust-based interactive partially

observable Markov decision process (TI-POMDP) is developed to model the trust

interactions between agents, enabling the agents to select the best course of action

from the current state. The TI-POMDP is a novel approach to multiagent coopera-

tion based on an interactive partially observable Markov decision process (I-POMDP)

augmented with trust relationships.

Experiments using the Defender simulation demonstrate the TI-POMDP’s abil-

ity to accurately track the trust levels of agents with hidden agendas The TI-POMDP

provides agents with the information needed to make decisions based on their level of

trust and model of the environment. Testing demonstrates that agents quickly iden-

tify the hidden trust levels and mitigate the impact of a deceitful agent in comparison

with a trust vector model. Agents using the TI-POMDP model achieved 3.8 times

the average reward of agents using a trust vector model.

iv

Acknowledgements

I would like to thank my family for their support and my committee for their guidance.

Richard Seymour

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . x

List of Symbols . xi

List of Abbreviations . xii

I. Introduction . 1
1.1 Problem . 2
1.2 Research Goal . 3
1.3 Methodology . 3

1.4 Significance . 4

1.5 Outline . 5

II. Literature Review . 6
2.1 States . 6
2.2 Multi-agent Environments 7

2.3 Trust . 14
2.3.1 Trust Objectives 17

2.4 Trust in Multi-agent Environments 18

2.5 Summary . 18

III. Trust-based I-POMDP . 20
3.1 Framework Development 20

3.2 TI-POMDP Framework 22
3.3 Model Updates . 26

3.4 Impact of Trust . 29

3.5 Summary . 29

IV. TI-POMDP Testing . 31

4.1 Scenario . 31
4.2 Implementation . 32

4.2.1 Environment Controller 32
4.2.2 Attackers . 34

vi

Page

4.2.3 Agents . 35

4.2.4 TI-POMDP . 36
4.2.5 Decision Policy Calculation 41

4.3 Design of Experiments 47

4.3.1 Factorial Test 47
4.3.2 Performance Test 50
4.3.3 Comparison Test 50

4.4 Summary . 52

V. Results and Analysis . 53

5.1 Factorial Test Results 53
5.1.1 Average Reward 55

5.1.2 “Cooperates” 63

5.1.3 “Betrays” . 68

5.2 Performance Test Results 73
5.3 Comparison Test Results 73

5.4 Summary . 79

VI. Conclusions . 82
6.1 Research Contributions 83
6.2 Research Conclusions . 83
6.3 Future Work . 83
6.4 Final Remarks . 84

Bibliography . 85

vii

List of Figures
Figure Page

2.1. Belief Nesting. 14

3.1. TI-POMDP Cycle. 26

4.1. Defender Simulation. 33

4.2. Simulation Components. 33

4.3. Trust Interaction. 40

4.4. Agent Decision Transitions. 44

4.5. Cooperative Tiger Game. 52

5.1. Sum of Squares. 55

5.2. Residual Plot. 58

5.3. Average Reward vs. Number of Agents. 60

5.4. Average Reward vs. Reward Levels. 60

5.5. Average Reward vs. Agent Mix. 61

5.6. Average Reward vs. Corruption Rate. 62

5.7. Average Reward vs. Redemption Rate. 63

5.8. “Cooperates” vs. Number of Agents. 64

5.9. “Cooperates” vs. Reward Levels. 65

5.10. “Cooperates” vs. Agent Mix. 65

5.11. “Cooperates” vs. Corruption Rate. 66

5.12. “Cooperates” vs. Redemption Rate. 67

5.13. “Betrays” vs. Number of Agents. 68

5.14. “Betrays” vs. Reward Levels. 69

5.15. “Betrays” vs. Agents Mix. 70

5.16. “Betrays” vs. Corruption Rate. 71

5.17. “Betrays” vs. Redemption Rate. 72

5.18. Algorithm Execution Time. 74

viii

Figure Page

5.19. Algorithm Execution Time without Policy Learning. 74

5.20. “Cooperation” vs. Corruption/Redemption Rate. 78

5.21. “Betrayal” vs. Corruption/Redemption Rate. 79

ix

List of Tables
Table Page

3.1. Trust Model . 23

4.1. Agent Decision Transition Model 45

5.1. Complete ANOVA . 57

5.2. Cooperation Success Rate . 67

5.3. Betrayal Success Rate . 72

5.4. CTG Rewards. 75

5.5. CTG Agent Actions. 76

5.6. Comparison of Agent Actions 77

5.7. Actions Due to Corruption/Redemption Rate 80

5.8. Agent Actions . 81

5.9. Comparison of Average Rewards 81

x

List of Symbols
Symbol Page

S State . 7

A Action . 7

T Transition Function . 7

R Reward Function . 7

Ω Observation Set . 7

O Observation Function . 7

b Agent Belief . 8

β Normalizing Constant . 8

π Decision Policy . 8

γ Decay Factor . 8

U Expected Reward . 8

I Number of Agents . 10

h Finite Horizon . 10

IS Interactive State . 11

M Model . 11

f Agent’s History and Observation Function 11

h Agent’s History . 11

θ Agent Type . 12

l Strategy Level . 13

τ Trust Model . 22

xi

List of Abbreviations
Abbreviation Page

TI-POMDP Trust-based Interactive Partially Observable Markov Deci-

sion Process . iv

I-POMDP Interactive Partially Observable Markov Decision Process iv

MDP Markov Decision Process 7

POMDP Partially Observable Markov Decision Process 7

DEC-POMDPDecentralized Partially Observable Markov Decision Process 10

ANOVA Analysis of Variance . 47

CTG Cooperative Tiger Game 51

SSTR Sum of Squares Due to Treatment 53

SSE Sum of Squares Due to Error 54

MSTR Mean Square Due to Treatment 54

MSE Mean Square Due to Error 54

xii

The Trust-based Interactive

Partially Observable

Markov Decision Process

I. Introduction

In a cooperative system, groups agents accomplish tasks by working together and

leveraging the skills and abilities of every agent. While the decisions of individual

agents may not maximize their personal gain, they attempt to maximize the overall

reward for the group through these cooperative actions [3]. These cooperative actions

leverage the individual capabilities of several agents to perform complex tasks beyond

the ability of a single agent.

The complex programming required to generate cooperation and allow coordina-

tion among agents presents a target for adversaries trying to reduce the effectiveness

of the system. Cooperative systems are based on an underlying level of trust (either

implicit or explicit) among the group of agents, and the potential exists for “sneaky”

agents to exploit this trust by cooperating when the stakes are low and taking self-

ish, greedy actions when the rewards rise. Ultimately, these actions can degrade the

performance of the system leading to a complete lack of cooperation.

The concept of trust is central to agent interactions [10] in much the same way

as human interactions. Just as a person refuses to buy a car from a salesman he does

not trust, an autonomous agent refuses to cooperate with an agent it does not trust.

Trust can be thought of as the fundamental difference between a cooperative and a

competitive environment. In a completely cooperative environment, the agents trust

and rely on one another to accomplish their goals. In a competitive environment,

agent a believes that agent b will act in its own best interests to the detriment of

agent a. In between lies a gray area where agents must choose whether to cooperate

based on their belief in the trustworthiness of others.

1

Typical trust modeling treats trust as a “hidden” rating [18, 22, 25]. Once an

agent identifies the appropriate rating of another agent, it uses that rating to deter-

mine whether or not to interact with the other agent. This method is similar to the

eBay™ user rating system. An eBay buyer looks at the ratings of a seller before decid-

ing to purchase an item. If the seller has a positive score, the buyer can purchase with

confidence. An occasional pitfall with this system is a deceitful seller looking to cash

out. The seller builds a large positive rating before selling several high priced items

that he never intends to deliver. Buyers pay for the items and the seller vanishes with

the money.

A similar scenario can play out in a multi-agent environment for a variety of

reasons. A sneaky agent can act trustworthy for a period of time to build trust until

it decides to betray the other agents. A “hacker” can alter an agent’s programming

causing it to compete instead of cooperate. A random bit flip could corrupt an agent

causing it to behave sporadically. In a world where trusting the wrong agent once

can lead to the loss of time, money, and system capabilities, a reliable autonomous

agent requires a robust ability to determine the true intentions of the other agents

it interacts with. This paper takes a step down the path to robust agent reasoning

through a multi-agent environment based on trust modeling. This chapter defines the

problem, describes the goal of this research, presents the methodology, examines the

significance and limitations of the study, and outlines the paper format.

1.1 Problem

This research focuses on the ability of a group of agents to reason about the

trustworthiness of each other and make optimal decisions about whether to cooper-

ate. The agents attempt to maximize the common reward of the system while still

protecting their individual interests. When possible, the agents attempt to cooperate

with one another with the expectation of receiving some benefit from the cooperation.

To successfully cooperate, the agents must be able to identify the appropriate

level of trust to place in one another and identify when that trust level changes [10].

2

Failing to identify the appropriate level of trust opens an agent to exploitation and

increases the potential for an agent to miss an opportunity for cooperation.

While trust modeling usually focuses on an individual agent’s level of trust in

the other entities it interactions with [18,25], this research attempts to create a multi-

agent model that entails the trust models and decision processes of all of the agents in

the environment. This level of modeling captures the impact of individual actions and

trust fluctuations on the entire collective as the agents to manage domain uncertainty.

1.2 Research Goal

The goal of this research is to merge trust modeling and multi-agent decision

making so that agents can use their perception of the world (including their estimate of

the trustworthiness of others) to select an appropriate course of action when the other

agents in the collective become corrupted. The specific objectives of this research are:

• Develop a trust-base multi-agent framework that allows agents to make deci-

sions according to their beliefs about the current state of the world and the

trustworthiness of the other agents.

• Implement the trust-based multi-agent framework in a simulation to demon-

strate cooperation as an emerging behavior.

• Test the trust-based multi-agent framework against a trust vector model [17] to

demonstrate the utility of the framework.

The simulation and testing must answer the question of whether the addition of

trust modeling results in better agent decisions. The framework must be adaptable,

support a wide range of individual trust models, and include the ability of individual

agents to use unique models within the same environment.

1.3 Methodology

This thesis describes the TI-POMDP, a multi-agent framework that takes the

novel approach of combining a multi-agent decision process with trust modeling. This

3

framework expands trust modeling to demonstrate the impact of trust on a group of

agents, rather than just an individual agent. The framework is based on a modified

I-POMDP [7] with trust modeling added into the decision making process. The trust

model is updated with the observations from the I-POMDP portion of the frame-

work. The updated trust model then aids the state belief update of the I-POMDP

portion. While an experience-based trust model [2] is used in the demonstration of

this framework, any trust model could be used. Because the framework is based on the

I-POMDP, an optimal solution to the framework requires up to double exponential

time [21].

A two agent game and a multi-agent simulation are used to evaluate the perfor-

mance of the framework, specifically looking at the amount of cooperation between

agents and rewards achieved by the agents. The game is a modified version of the

Tiger Game [7,13]. The multi-agent simulation models a group of agents attempting

to cooperate in an environment with fluctuating trust. Testing includes an analy-

sis of the simulation settings that affect the framework results, a demonstration of

the framework execution time, and a comparison between the framework and a trust

vector model [17].

This research assumes that all environment agents are operating within the

framework and that groups of agents can not collude to subvert the ability of the

framework. While the simulation entails factors in addition to trust modeling, the

testing is designed to explore the specific effects of the trust modeling. The testing

does not include communications between the agents. This eliminates the usage of

trust models that are based on reputation networks [22,24].

1.4 Significance

This research merges the high level decision reasoning of a multi-agent envi-

ronment with the individual oversight of trust modeling. The end result is a deci-

sion framework that allows unique agents to reason about the trustworthiness of one

another. The agents determine whether to work with other agents that may have

4

different capabilities and different trust models. In the simulation, the agents using

the TI-POMDP accomplish tasks 36.2 percent faster and receive 3.8 times the average

reward of agents using a trust vector model [17].

1.5 Outline

This thesis is divided into six Chapters including this introduction. Chapter II

provides a literature review of the current work in solving multi-agent environments

and trust modeling. Chapter III describes the framework modeling a multi-agent

environment incorporating trust into the agent decision process. Chapter IV presents

a simulation based on the framework from Chapter III. In addition, Chapter IV

outlines the testing methodology used to validate the simulation. Chapter V presents

the results and analysis of the testing. Chapter VI provides the detailed conclusion of

the trust-based multi-agent environment and outlines future areas of research. This

thesis is designed for readers with a working knowledge of I-POMDPs, but related

work is referenced where applicable.

5

II. Literature Review

Similar to heavy objects needing two or more people to lift, many problem do-

mains require multiple agents to satisfy all domain requirements. A given task

may require specialized skills from two or more agents, or the task could require mul-

tiple agents in separate locations at the same time. Either way, the overall problem

complexity increases as coordination and cooperation components are added to each

individual agent. This chapter includes a brief description of a state within an en-

vironment, examines existing multi-agent environment models, and presents a wide

range of trust modeling techniques.

2.1 States

In an environment, the state is the current setting of all variables within the

environment. Some settings may be known (location, time of day, etc.) while other

may not be observable (that agent’s intentions, the man behind the curtain, etc.).

As forces act upon the environment items, the settings with respect to those items

change, resulting in a different state. Ultimately, the current state is the result of the

initial settings of the environment plus all of the actions that altered those settings.

While tracking the initial state and every action taken provides a precise esti-

mate of the current state, it represents a very long path. Estimating my current state

in this manner would require examining every step I have taken, every class I have

attended, and all of the other numerous factors throughout my life. This same path

exists for a simple agent operating in an environment. Its current state is based on

its initial position plus all of the actions it has taken, but trying to track all of the

calculations and operations a computer makes for even a minute is a very large task.

Fortunately, that long train of calculations and operations can be reduced and

still provide an accurate estimate of the current state. For instance, a college student

trying to find his roommate does not need to retrace all of the steps the roommate

has taken in life, the student only needs to remember that the roommate said he was

hungry fifteen minutes ago to realize the roommate is at the cafeteria. Similarly, an

6

agent may know that another agent just completed a task in a given location and

assume that agent is still in the vicinity of the task. This is an example of the Markov

assumption which says that the current state only depends on a finite history of the

previous states [20]. All of the multi-agent environments reviewed in the following

section utilize the Markov assumption to eliminate the need to maintain a complete

list of every previous environment state.

2.2 Multi-agent Environments

Single agent domains can be modeled as a Markov decision process (MDP) [4].

An MDP is defined by the tuple 〈S,A,T,R〉, where

• S is the set containing the finite number of environment states.

• A is the set of actions an agent can take.

• T is the transition model S ×A → S ′ that defines the probability that an agent’s

actions in an initial state s will change to state s′.

• R is the expected reward an agent receives from taking action a in state s and

reaching state s′.

The MDP selects the course of action from a given state with the highest ex-

pected reward. At each time step, an agent in state s performs action a attempting

to reach state s′ which holds the highest expected reward r. Transition distribution

t maintains the probability of going from s to s′ by performing a.

An MDP requires that an agent is operating in a fully observable environment,

meaning the current state of the agent is known. The agent is not capable of dealing

with uncertainty about its current state or partial observability.

A partially observable Markov decision process (POMDP) [13] allows a single

agent to cope with uncertainty about its current state while operating in a stochastic

environment. A POMDP is defined by the tuple 〈S, A, T, Ω,O, R〉, where

• S,A, T, and R are unchanged from the MDP.

7

• Ω is the finite set of observations an agent can make about its environment.

• O : S x A →
∏

(Ω) is the observation function which returns the probability of

making observation o given that an agent took action a to get to state s′.

The POMDP uses memory about previous actions and observations to deter-

mine states. An agent’s state belief is a distribution over S. The state belief is defined

by the equation:

bt
i(s

t) = βOi(o
t
i, s

t, at−1
i)

∑

st−1εS

bt−1
i (st−1)Ti(s

t, at
i, s

t−1) (2.1)

where:

• bt
i(s

t) is agent i’s belief b at time t that the state is s.

• β is a normalizing constant.

The belief, bt
i, in the current state being st encompasses the changes in the initial

belief, bt−1
i , as a result of taking action, at−1

i , at time, t − 1, resulting in the current

set of observations, ot
i.

A decision policy describes an agent’s behavior by mapping what action an

agent takes in each state and is defined as S → A.

The policy that includes the decision for every state is defined by the equation:

π∞t (s) = argmax
a

[
R(s, a) + γ

∑

s′εS

T (s, a, s′)U∞
t−1(s

′)
]

(2.2)

where:

• π is the decision policy S → A specifying the action a to be taken in state s.

• γ is a decay factor.

• U is the expected future reward from state s.

8

Solving for the optimal policy requires finding the action for each state with

the highest expected reward after an infinite number of decisions. While learning the

optimal policy is undecidable for an infinite horizon, approximation techniques can

be used to determine a reasonable policy.

Value iteration [13] finds the optimal policy to a horizon of t by iterating through

all permutations of state-action transitions to determine the path with the highest

expected reward. Instead of predefining t, the iteration continues until the expected

reward difference between consecutive levels (t and t − 1) is less than some small ε.

Policy iteration [20] evaluates the utility of every state using the current policy and

then calculates a new policy based on the maximum expected utility of the subsequent

state. This process repeats until the current policy and the new policy converge.

The computational complexity of the decision policy can be further reduced

using other techniques. Behavioral equivalence [16] is used to collapse large numbers

of states into a manageable space. Particle filtering [8] uses particles to represent

possible states and carries a subset of particles forward in time. Alpha-beta minimax

[20], modified A∗ search [23] and dynamic programming [12] can be used to quickly

prune dominated branches of the search tree. Additionally, the problem domain

dimensionality can be reduced using principal component analysis [19].

Given a decision policy, the an agent’s expected reward for a finite horizon of t

from state s is calculated inductively by:

Uπ,t(s) = R(s, πt(s)) + γ
∑

s′εS

T (s, πt(s), s
′)Uπ,t−1(s

′) (2.3)

where:

• πt is a non-stationary decision policy that is executed for t time steps.

To find the optimal solution to the expected reward for a given state, all possible

future states s′ must be considered as well as the probability of their occurrence

9

(T (s, πt(s), s
′)) and their expected reward value. The future states s′ are dependent

on their future states s′′ in the same manner.

The finite horizon assumes the decision policy changes with each time step

because the agent is reaching the endgame. In a given state, an agent might make

a greedy decision if it knows there are no long term consequences because this is its

final decision. Conversely, the agent chooses to maximize future reward by selecting

a different action from the same state earlier in its decision tree. Using an infinite

horizon, the agent’s decision policy does not change with time because the agent never

approaches the endgame. The expected reward for an infinite horizon is given by the

recursive equation:

Uπ(s) = R(s, π(s)) + γ
∑

s′εS

T (s, π(s), s′)Uπ(s′) (2.4)

Unfortunately, the traditional POMDP can not handle a multi-agent environ-

ment, but it can be expanded. The decentralized-POMDP (DEC-POMDP) [3] is

defined by the tuple 〈I, S, A, T, R, Ω, O, h〉

where:

• I is the number of agents in the environment.

• h is a positive integer representing the finite horizon.

In the DEC-POMDP, the state transitions T and rewards R are dependent on

the actions of all the agents in the environment. The POMDP is a special case of

the DEC-POMDP with only 1 agent in the environment. Ultimately the single group

reward for all of the agents works well in a cooperative environment.

While the expected reward calculations do not change from the POMDP (Equa-

tions 2.3 and 2.4), the policy function does change.

10

UT
π (s) =

∑

〈ō1,ō2〉

∑
qεS

∑

s′εS

T̄π(s, ō1, ō2, q)T (q, π1(ō1), π2(ō2), s
′)R(q, π1(ō1), π2(ō2), s

′)

(2.5)

In the DEC-POMDP, the policy function depends on the policies and states

of all of the agents in the environment. Equation 2.5 is the policy function for a

DEC-POMDP with two agents.

The I-POMDP [7] builds further on the framework expanding the concept of

states to include the beliefs an agent has about other agents (agent states, intentions,

and beliefs). An I-POMDP, consists of the tuple 〈ISi, A, Ti, Ωi, Oi, Ri〉 for each agent

i within the environment, where

• ISi is the set of interactive states S×Mj, with S being the set of environment

states, and Mj is the set of models of agent j. Each model mj consists of the pair

〈fj,hj〉 where fj is a function that maps the possible histories of j’s observations

to its actions and hj is one of the possible histories.

• A is the set Ai × Aj of joint actions of all agents.

• Ti is S ×A× S ′ which is the transition model that defines the probability that

an agent’s actions will change the state.

• Ωi is the set of observations an agent can make.

• Oi is S × A× Ωi which is the probability that agent taking action a in state s

will make observations Ω.

• Ri is ISi × A → R which is the expected reward agent i receives from taking

action a in states is.

11

Building off the POMDP belief update, Equation 2.1, the I-POMDP belief

update is

bt
i(is

t) =β
∑

ist−1:m̂t−1
j =θ̂t

j

bt−1
i (ist−1)

∑

at−1
j

Pr(at−1
j |θt−1

j)Oi(s
t, at−1, ot

i)

·Ti(s
t−1, at−1, st)

∑

ot
j

τθt
j
(bt−1

j , at−1
j , ot

j, b
t
j)Oj(s

t, at−1, ot
j) (2.6)

where:

•
∑

ist−1:m̂t−1
j =θ̂t

j
is the summation over all is where agent j’s frame is θ̂t

j

• θ is an agent’s type.

• bj is agent j’s belief elements of type θj.

• Pr(at−1
j |θt−1

j) is the probability that agent j took action a at the last time step

given its type θj.

• Oj is agent j’s observation function.

• τθt
j
(bt−1

j , at−1
j , ot

j, b
t
j) is agent j’s belief update.

The policy function for the I-POMDP is

π∞t (is) = argmax
a

[
R(is, a) + γ

∑

is′εIS

T (is, a, is′)U∞
t−1(is

′)
]

(2.7)

The policy function solves for the maximum expected reward of each interactive

state. The maximum expected reward for a finite horizon is

U(θi) = max
aiεAi

{ ∑
is

ERi(isi, ai)bi(is) + γ
∑
oiεΩi

Pr(oi|ai, bi)

·U(〈SEθi
(bi, ai, oi), θ̂i〉)

}
(2.8)

where:

12

• ERi(is, ai) is the expected reward for taking action ai in interactive state is.

ERi(is, ai) =
∑

aj Ri(is, ai, aj)Pr(aj|mj).

• SEθi
is the state estimation, an abbreviation of the belief update.

The maximum expected reward for an infinite horizon is

OPT (θi) =argmax
aiεAi

{ ∑
is

ERi(isi, ai)bi(is) + γ
∑
oiεΩi

Pr(oi|ai, bi)

·U(〈SEθi
(bi, ai, oi), θ̂i〉)

}
(2.9)

The I-POMDP represents a series of individual POMDPs. In addition to the

computational complexity of the POMDP (multiplied by the number of agents in

the environment), the I-POMDP has additional nesting within the belief model of

the agents. Each agent possesses beliefs about the other agents in the environment,

and these beliefs include the other agent’s beliefs about all of the other agents. This

nesting continues infinitely as the agent tries to reason about the other agent’s models

as depicted in Figure 2.1. The typical solution to this infinite nesting limits the trace

to a strategy level, l, usually the first belief model of the other agents, using the

Markov assumption [21]. At the 0-th level of nesting, the other agents actions are

added to the noise of the T,O, and R functions. The first level beliefs become a

probability distribution over S and the 0-th level models of the other agents. The

first level beliefs are solved as a series of POMDPs of the 0-th level models. The

individual POMDPs are solved using the policy function and reward function from

the POMDP discussion. According to Seuken [21], an I-POMDP is PSPACE-hard for

finite-time horizons, undecidable for an infinite horizon, and an optimal I-POMDP

algorithm takes up to double exponential time.

13

Figure 2.1: Recursive belief nesting of an agent’s model of the
other agents.

2.3 Trust

One of the underlying assumptions with many of the multi-agent environments is

that the agents are cooperating to achieve the highest reward possible (DEC-POMDP

is one example), but that is not always the case. Many problems require the agent

domain to mimic the human world where adversaries are working against one another.

The problem can be further compounded when an adversary acts like a genuine ally

to gain trust that can be exploited later. If one component of an automated net-

work defense suite is compromised, the other components still trust the compromised

component. This trust allows the other components to be circumvented or corrupted

themselves.

The main hurdle with a trust based environment is defining and learning the

trust values for each agent. There are several proposed methods for generating the

initial trust model.

• Experience-Based

Experience based models [2] rely on past interactions. The outcomes of previous

interactions form the agent’s trust rating for future interactions. This type of

model is useful in domains that allow repeated interactions with the same agents.

14

• Attitude-Based

An extension of the experience-based model is a game theoretic model where

an agent selects it willingness to sacrifice its own reward to benefit its oppo-

nents reward [6]. The agent learns its opponent’s “attitude” through repeated

interactions. The agent adjusts its own “attitude” based on whether it can ben-

efit from helping its opponent. The combination of these “attitudes” plus an

expected reciprocation threshold guides an agent’s decision to cooperate.

• Reinforcement Learning

One of the basic ways is to build a trust estimate is through reinforcement

learning. Reinforcement learning allows an agent to generate its model of the

world (in this case the trust rating of another agent) through interactions with

the world [20]. As an agent interacts with its surroundings, it receives positive

rewards reinforcing its current behavior or negative rewards causing it to change

behavior. If agent a trusts agent b to perform a task and b fails to accomplish

its mission, then a does not receive its expected reward. Agent a can determine

that agent b is untrustworthy and refuse to cooperate with b in the future.

• Network

A common approach builds a network of trusted agents [22,24], also called rep-

utation modeling. An agent polls its network to get recommendations about

an unknown agent, and the agents in its network return their recommendations

which are then combined. If one of polled agents does not have a recommen-

dation about the unknown agent, it will poll its own trust network for recom-

mendations. This method is useful in larger multi-agent environments where an

agent is not constantly interacting with the same agent. The network approach

allows agents to pass information back and forth, quickly propagating the out-

comes of past interactions. This method does not work for domains with only

a few agents because there is no network to build.

• Preliminary Interactions

15

A drawback to reinforcement learning is that agents may only get 1 opportunity

to trust another agent. In the worst case, trusting a deceitful agent can lead to

the destruction of the agent. A proposed solution to this problem is to allow

initial interaction between agents prior to a decision about whether or not to

cooperate [18]. The agents discuss their intentions and the responses given are

classified into clusters representing the honesty makeup of the population. An

agent decides whether to cooperate based on the classification of the other agent.

The concept is designed to mimic the human ability to determine whether or

not to trust someone based on an initial feeling, but the preliminary interaction

may not always be feasible in a multi-agent environment.

• Trust Vectors

The concept of differing levels of trust led to the creation of trust vectors [17].

Each level or parameter of trust is given a numeric value. The numeric values are

stored in a single vector that is normalized to give a trust rating at a particular

time. Trust vectors allow trust modeling to extend to multidimensional domains

where an agent is trustworthy in some aspects and deceitful in others.

• Adaptive Trust

Adaptive trust modeling [10] dynamically combines reputation-based models

and experience-based models. Reputation systems suffer when reputations are

inaccurate. Experience systems have difficulty forming initial trust ratings and

suffer in environments that do not allow repeated interactions. Leveraging both

models allows an agent to overcome the drawbacks of the individual models.

• Fuzzy Sets

Trust ratings based on fuzzy sets [1] use a series of overlapping categories to

determine the trust rating of an agent. An agent’s trust rating is based on the

aggregate of the probabilities that the agent belongs to each of the individual

categories. Once again, a time decay function can be used to reduce the impact

of less recent actions.

16

Once an agent knows whom he trusts, the agent simply chooses to work with the

trusted agents and isolates the untrusted agents. The established trust levels must be

updated as agents come and go within the environment. If a trusted agent leaves for a

period of time and reemerges, its identity must be authenticated to mitigate the risk

of interacting with an agent spoofing the trusted agent. To combat this problem, an

agent can be the responsibility of the entity that placed the agent within the domain.

The entity can encode information in the agent known only to the entity that other

agents would use to authenticate the true identity of the agent [25].

Additionally, agents must continuously reevaluate their trust rankings of the

other agents. Reevaluation is used to capture changing trust levels and can be applied

to sneaky agents that cooperate when the stakes are low to build trust before betraying

to achieve a large reward.

2.3.1 Trust Objectives. Karen Fullam, et al. developed a comprehensive list

of objectives for trust-based research [11] to help guide research and aid in comparison

testing. The objectives include building trust models that are adaptive, accurate,

quickly converging, multidimensional, and efficient. Once these basic requirements

are met, agents must be able to identify and isolate untrustworthy agents, evaluate

the utility of an interaction, and ultimately decide whether and with whom to interact.

Several specific areas exist within trust research. Determining the best way

to initialize a trust model is difficult, especially for experience-based systems. For

any trust system, setting the threshold to revisit trusted or untrusted neighbors is

a balance between returning too rarely which misses changes in trust and returning

too often which wastes computation cycles. The time decay of past interactions tries

to maintain past histories of betrayal while not making it impossible for an agent to

redeem itself. This is critical for experience-based and trust vector models that rely

heavily on past interactions. Reputation-based and similar models are influenced by

the neighbor nodes that relay information to an agent. If the agent does not trust any

of its neighbors, that agent becomes isolated from the rest of the environment. This

17

research focuses on the model representation used and the revisit rate of relearning

agent trust levels.

2.4 Trust in Multi-agent Environments

The addition of trust into a system reduces the options for formulating the

coordination problem. By definition, an MDP and a POMDP can not fully cap-

ture the domain because they are designed for single agents. An environment with

trust modeling possesses cooperative agents working together and competitive agents

attempting to achieve higher individual rewards. The different motives creates the

need for individual reward functions that model these motives. The DEC-POMDP is

not designed to handle the individual reward functions. That leaves the I-POMDP

framework as a starting point for our trust environment. Within this framework, trust

may be modeled in multiple dimensions where an agent can be trustworthy in some

aspects, but prone to lying in others.

2.5 Summary

Agent models are often dictated by the complexity of the tasks the agents are

designed to perform and the environment they operate in. Single agent models are

typically defined by the amount of certainty the agent has about it environment.

As agent certainty increases, model complexity can decrease. Multi-agent models tie

multiple instantiations of the single agent model together allowing agents to cooperate

with one another while still operating independently. Among the multi-agent models,

the I-POMDP allows the largest amount of individual behavior within the framework.

Each agent has its own reward function and attempts to determine the beliefs of every

other agent within the environment.

The individual reward functions and belief models allow the I-POMDP to incor-

porate trust representations. Trust representations are used to determine whether an

agent will cooperate or compete with another agent. The individual reward functions

embody an agent’s trust level. A competitive agent values actions that hinder the

18

other agents while a cooperative agent values actions that benefit the collective. The

individual belief models are used to determine the trust level of another agent.

19

III. Trust-based I-POMDP

The basic goal of the multi-agent environments and trust models described in

Chapter II is to create agents that make decisions based on their interpretation

of the world around them. In the multi-agent environments, agents try to determine

the current state of the world and select the most beneficial action based on a future

expected reward. The trust models analyze the agents in the world to select the most

beneficial cooperative action based on the probability of its success. The similarly

aligned goals create a natural merger between the two mechanisms to create a complex

multi-agent environment where agents reason about trust and the environment state

to aid their decision making.

This complex multi-agent environment is the TI-POMDP framework described

in this chapter. The TI-POMDP incorporates trust modeling to determine which

agents are willing to cooperate with one another while using the decision making

process of the I-POMDP [7]. The TI-POMDP mirrors the I-POMDP framework with

additional trust components implemented as needed. The trust components directly

impact several pieces of the traditional I-POMDP framework without altering the

mechanisms used to analyze and reason about the multi-agent environment. The

trust implementation is not constrained to a specific trust model (i.e. experience-

based [2], reputation-based [22], or trust vector [17]) which allows the framework to

be easily modified for a variety of domains.

3.1 Framework Development

The TI-POMDP is an extension of the I-POMDP [7]. The TI-POMDP main-

tains the basic components of the I-POMDP while incorporating trust modeling as

a primary decision factor for the agents. In addition to the state belief model (an

agent’s estimate of the current environment), an agent maintains and updates a trust

model (a rating of the trustworthiness of the other agents) for the environment. This

trust model contains an agent’s level of trust in the other agents. This level of trust

20

helps the agent decide whether or not to cooperate with another agent on a given

task.

Modifying the I-POMDP framework (Section 2.2) requires identifying the com-

ponents of the I-POMDP tuple, 〈ISi, A, Ti, Ωi, Oi, Ri〉, that are directly affected by

trust modeling. While almost every component is affected to some extent, most com-

ponents only receive an increased set or function size.

In the I-POMDP, the interactive state (ISi) is the cross product of the state(s)

and the model (an estimate of the other agent’s state belief based on their past

actions) of the other agents in the environment. Adding the trust model to the I-

POMDP combines an agent’s state belief with its current trust model. An agent’s

current state has an additional focus on which agents it can cooperate with and which

agents it should betray.

The set of actions (A) an agent can take does not directly change. The actions

an agent takes can now result in cooperation, betrayal, or some other interaction with

the other agents in the environment.

The transition function (Ti) becomes more complex as the agent’s trust model

is updated during state transitions. The transition function covers a larger range of

inputs and outputs as the number of states increase.

The set of observations (Ωi) increases as an agent must have observations that

distinguish between cooperative and corruptive actions. In order to reason about the

intentions and trustworthiness of another agent. The observation function (Oi) covers

a larger range of outputs due to the increased observation set.

The reward function (Ri) is dependent on an agent’s trust model which increases

the size of the function. The size increase is due to the reward function handling

both trustworthy and deceitful agents. A trustworthy agent values states that allow

cooperation with other trusted agents while the untrustworthy agent values states

that allow exploitation of the other agents [15]. As an agent’s trust model shifts, its

reward function must account for the shift. In a given state where all other agents

21

are trustworthy, agent a’s decision is based on its expected reward and its expected

reward is based on its reward function. If agent a is trustworthy, its reward function

associates high reward values with cooperative tasks and low reward values with

betraying tasks, but if agent a is untrustworthy, its reward function associates low

reward values with cooperative tasks and high reward values with betraying tasks.

The trust model is an agent’s current assessment of the level of trust it can place

in the other agents. Each time the agent observes the actions of another, it adjusts

its trust level of the other agent accordingly.

3.2 TI-POMDP Framework

The trust belief model used in the TI-POMDP is defined by τ . Agent i’s trust

belief model includes the true trust level of i and i’s estimate of the trust level for

every other agent j in the environment. In addition, i must also estimate every other

agent j’s trust level for every other agent j′ in the environment. This includes agent

j’s trust level of agent i. If agents i, j, and k are all assigned to a task and agent

i believes all three agents are trustworthy, agent i may still avoid cooperating on

the task if it believes that agent j does not trust agent k. The reward function R

examines τi to determine the expected reward for a given state. If agent j does not

trust agent k according to τi, then agent i’s expected reward for working with agents

j and k decreases because agent i does not believe that agent j will work with agent

k resulting in agent j not fully cooperating on the task.

Table 3.1 illustrates a simple binary trust model for Agent 1. Each column

represents Agent 1’s belief about a given agent’s trust model. The Agent 1 column

shows Agent 1’s the actual trust value and its ratings of Agents 2 and 3. The ratings of

Agents 2 and 3 are the primary influences on whether Agent 1 is willing to cooperate

with the other agents. The Agent 2 column shows Agent 1’s estimate of Agent 2’s

ratings. Agent 2’s rating of itself is always identical to Agent 1’s rating of Agent

2 since both ratings are based on Agent 1’s beliefs. The Agent 3 column has the

estimate of Agent 3’s ratings.

22

Table 3.1: An agent’s trust model τ of the other
agents in the environment. The trust model depicted
is a binary model.

Level of Trust Agent

in Agent 1 2 3

1 1 0 1

2 1 1 0

3 1 1 1

In this trust model, Agent 1 trusts Agents 2 and 3, but does not believe that

Agent 2 trust it or that Agent 3 trusts Agent 2. Based on this trust model, Agent 1

does not believe that Agent 2 is willing to cooperate with it. In addition, if Agents 2

and 3 are trying to work together, Agent 1 believes that Agent 2 tries to cooperate

but Agent 3 does not based on its rating.

While the binary trust system is illustrated here, other trust models can be used.

Each rating in the table represents a complete trust model system for that rating. If

trust vectors [17] are used as the trust model, each rating becomes an individual trust

vector with Agent 1’s estimates of which actions the other agents observed and how

they analyzed those actions. If a reputation network [24] is the trust model, each

rating is Agent 1’s estimate of the information the other agents received from the

network.

After adding trust to the I-POMDP framework, the TI-POMDP tuple remains

〈ISi, A, Ti, Ωi, Oi, Ri, 〉, where

• ISi for agent i is the set of interactive states S × Mj where S is the set of

environment states, and Mj is a model of agent j, ∀j 6= i . Each state s includes

a trust belief model τi. Each model mj consists of the tuple 〈fj, hj, τi,j〉 where

fj is a function that maps the possible histories of j’s observations and i’s trust

belief model of j to j’s actions, hj is one of the possible observation histories,

23

and τi,j is i’s trust rating of j. Agent i uses mj to predict agent j’s actions.

Agent i bases its action decision in part on the prediction of agent j’s action.

• A is the set Ai × Aj of joint actions of all agents.

• Ti is S×A×S ′ which is the transition model that defines the probability that an

agent’s actions will change the state. The change in state includes the change

τi.

• Ωi is the set of observations an agent can make.

• Oi is S × A× Ωi which is the probability that agent taking action a in state s

will make observations Ω.

• Ri is ISi × A → R which is the expected reward agent i receives from taking

action a in state is.

Building on the I-POMDP belief update, Equation 2.6, the TI-POMDP belief

update is

bt
i(τi, is

t) =β
∑

ist−1:m̂t−1
j =θ̂t

j

bt−1
i (τi, is

t−1)
∑

at−1
j

Pr(at−1
j |θt−1

j)Oi(s
t, at−1, ot

i)

·Ti(s
t−1, at−1, st)

∑

ot
j

τθt
j
(bt−1

j , at−1
j , ot

j, b
t
j)Oj(s

t, at−1, ot
j) (3.1)

where:

• τi is agent i’s trust model.

• bt
i(τi, is

t) is agent i’s belief b at time t that the interactive state is is.

• β is a normalizing constant.

•
∑

ist−1:m̂t−1
j =θ̂t

j
is the summation over all is where agent j’s frame is θ̂t

j

• θ is an agent’s type.

• bj is agent j’s belief elements of type θj.

24

• Pr(at−1
j |θt−1

j) is the probability that agent j took action a at the last time step

given its type θj.

• Oj is agent j’s observation function.

• τθt
j
(bt−1

j , at−1
j , ot

j, b
t
j) is agent j’s belief update.

The state belief update still requires a decision policy as outlined in the POMDP

discussion in Section 2.2. The same approximation techniques used for solving other

POMDP instances (Value Iteration [13], Behavioral Equivalence [16], etc.) are used

to reduce the search space and solve the TI-POMDP.

While an agent does not directly alter another agent’s belief model, an agent’s

actions affect the current state which does change the other agent’s current observa-

tions. The other agent attempts to reconcile its current observations with its expected

observations by adjusting its belief model including the models of all of the agents

in the environment. Adjusting the models of all of the agents includes adjusting the

estimated trust levels of each of the agents.

Each belief state has an associated maximum expected reward as defined by

U(θi) = max
aiεAi

{∑
is

ERi(τi, isi, ai)bi(τi, is) + γ
∑
oiεΩi

Pr(oi|ai, bi)

·U(〈SEθi
(bi, ai, oi), θ̂i〉)

}
(3.2)

where:

• U(θi) is the expected future reward for an agent of type θ.

• γ is a decay factor.

• ERi(τi, isi, ai) is the expected reward for taking action ai in interactive state isi

with trust model τi. ERi(τi, isi, ai) =
∑

aj Ri(τi, is, ai, aj)Pr(aj|mj).

• SEθi
is the state estimation, an abbreviation of the belief update.

25

Figure 3.1: The event cycle for the TI-POMDP.

3.3 Model Updates

Each time step, an agent attempts to determine the optimal action to take given

the true state which is based on the true trust model of the environment. In a fully

observable world, the agent would know where it is at and who it could trust. In a

partially observable world, the agent must estimate these values.

At a given time step, an agent calculates the expected reward for each of its

potential actions from each of its possible states. The agent selects the action with

the highest estimated reward. After taking the selected action, the agent observes the

changes in the environment and the actions of the other agents when possible. If the

actions of the other agents provide indications of their trust level, the agent updates its

trust model accordingly. Finally, after observing the changed environment, the agent

updates its state belief model based on its current trust model before attempting

to decide on its next action. Figure 3.1 illustrates the cycle of events during the

TI-POMDP execution.

The trust model, τ , is a component of the state belief and is updated based on

the observations prior to the state belief update. The agent updates its trust model

and then updates its state belief distribution.

26

In the trust model update, if agent a observes agent b commit an untrustworthy

act, agent a reduces its trust rating of agent b based on the rules of the trust modeling

representation used (ie. trust vectors [17] or reputation based [24]). Using the binary

trust model, agent a reduces agent b’s trust rating from 1 to 0. Additionally, if agent

a believes agent c also observed agent b’s action, agent a lowers its estimate of agent

c’s trust rating of b from 1 to 0. The overall effect is that agent a places less trust

in agent b and agent a believes that agent c also lowers its trust in agent b. Agent a

uses this trust model in future interactions to decide whether to interact with agent

b and to estimate how agent c interacts with agent b. The new trust model and the

observations about the new state are required for the state belief update which then

restarts the process.

The primary reason to separate the trust model update is to increase the flexibil-

ity of the trust model. Handling the trust model update separately allows the under-

lying trust model to change without impacting the rest of the TI-POMDP framework.

The trust model update must provide the agent’s current trust ratings of itself, its

ratings of the other agents, and the other agent’s ratings of all of the agents. A vector

trust model [17], a reputation based trust model [22, 24], a multidimensional trust

model [18], or another trust model can be implemented to return the appropriate

ratings as needed. This allows model selection based on applicability to the domain.

The ability to use different trust models creates the problem of selecting the

appropriate model for a given domain. Comparison testing can determine which

model performs best in a specific domain. A more general solution is to implement

separate models in parallel and use a decision process to dynamically choose which

model to use at a given time [26].

The second reason to update the trust model separately from the state belief

update is to reduce the combinatorics of the state belief update. Including the trust

model as a complete component of the state multiplies the number of states by the

total number of possible trust models an agent can have. In a basic two agent envi-

27

ronment where agents are either completely trustworthy or completely untrustworthy,

that state space is multiplied by an agent’s potential ratings of itself, potential rat-

ings of the other agents, and potential ratings of the other agent’s ratings of every

other agent. In this case, the state space is needlessly multiplied by a factor of eight.

The agent knows its true trust rating and the other trust ratings are based on prior

knowledge and experience. Instead of trying to estimate those values, an agent can

use its knowledge to focus on making the best possible decision at the current time.

The final reason to separate the trust model update is to eliminate fluctuations

in an agent’s trust model that can lead to a breakdown of trust within the system. If

an agent’s trust model is a component of its state belief probability distribution, the

agent can become extremely unpredictable or uncooperative. The purpose of the trust

model is to help the agent choose the most beneficial action for the given state. If the

trust model is a component of the state belief, the agent must find the most beneficial

action for each possible trust state, calculate the expected reward for each action

and then select the action that leads to the highest probable reward. For instance, a

trustworthy agent believes with 0.9 probability that the other agent is trustworthy in

a binary trust domain where successfully cooperating yields a reward of 10, working

alone has an associated reward of 1, and the reward for being betrayed is −100. The

agents expected reward for cooperating is 0.9∗10+0.1∗−100 = −1 while the expected

reward for working alone is 1. Given this situation, the agent always chooses to work

alone because of all the potential states, this one has the highest expected reward.

The state belief update (Equation 3.1) requires the agent incorporate its current

observations into its previous state belief in an effort to determine its current state.

The agent calculates the likelihood of making its current observations in each of the

possible states it may have reached given the distribution over the prior state(s) and

the action(s) taken. The previous state belief is then updated based on the observation

likelihoods for each state. Once a group of agents updates their state beliefs, they can

select and execute their next action. The action execution causes a state transition

and the agents receive rewards based on their new state.

28

3.4 Impact of Trust

The addition of trust modeling into the I-POMDP framework results in an

increase in the overall complexity of the framework. The I-POMDP is already N-

EXP complete [21] without the trust model. Adding the trust model multiplies the

state space by the trust model space. The size of the trust model space is based on

the number of unique trust levels an agent can have and the number of agents in the

domain. A single agent must rate every agent in the environment including itself (n

ratings). It must also account for the other agent’s (n − 1 agents) ratings of every

other agent (n − 1 agents). Agent i does not have to account for agent j’s rating of

agent j since it would already match agent i’s rating of agent j. In all, a single agent’s

trust model contains n + (n− 1)2 ratings. Since each individual rating can take one

of the m possible trust levels, there are a total of mn+(n−1)2 possible permutations of

an agent’s trust model.

This complexity increase is one reason for handling the trust model updates sep-

arately from the state belief updates as described in Section 3.3. Instead of computing

the probability distribution for the number of potential states multiplied mn+(n−1)2 ,

we can run a single linear update to the trust model and then compute the probability

distribution for just the number of states.

3.5 Summary

The TI-POMDP framework is introduced, creating a multi-agent environment

where an agent’s actions are influenced by its perception of the trustworthiness of the

other agents. The framework is an extension of an I-POMDP with the same basic

components (State, Action, Transition, Observations, and Rewards) plus the trust

model. The TI-POMDP updates the trust models based on current observations

and then updates the state beliefs based on the trust models and the observations.

Although the components of the TI-POMDP require exponential time to solve opti-

mally, the framework provides the benefit of incorporating another agent’s intentions

29

into an agent’s decision model. This opens a wider range of agent interactions giving

agents the ability to perform more complex tasks.

30

IV. TI-POMDP Testing

The TI-POMDP framework described in Chapter III defines a multi-agent envi-

ronment that models agent interactions based on trust. This chapter describes

the simulation and the experiments used for testing the TI-POMDP. The simula-

tion represents a base defense scenario with agents cooperating to destroy attackers.

While a full TI-POMDP framework is used to model the agents in the environment,

several assumptions are made to reduce computational complexity of the agents and

limit testing to just the TI-POMDP reasoning component. The testing on the sim-

ulation includes an analysis to identify factors affecting algorithm output, algorithm

performance testing that measures total execution time, and comparison testing with

another trust model.

4.1 Scenario

The TI-POMDP framework can be applied to a wide range of multi-agent prob-

lems. Agents can use the framework to decide whether to infiltrate a building based

on their level of trust in the reconnaissance agents relaying guard locations. An au-

tomated call center decides to reroute its call load to an idle center that it trusts

to handle the calls. A robotic lawn mower may use the framework to decide when

to help another robot mow its area based on whether its trusts the other robot to

reciprocate. The TI-POMDP is applicable in environments where task completion

can benefit from agent cooperation.

The TI-POMDP Simulation Defender focuses on a group of agents working to-

gether to defend an installation from attackers. When an attacker is identified, a sub-

set of the agents are tasked to destroy the attacker. Each agent must decide whether

to cooperate with the other tasked agents based on its individual goals (maximize

reward) and the amount of trust it has in the other agents. The defense scenario is

selected because it provides an environment capable of utilizing multiple agent types,

a wide range of actions, and a variety of observation and reward functions. While

31

these aspects only have a few settings currently, future work can utilize this large

domain.

After each task is completed, the agents try to identify the motives and alle-

giances of the other agents to help refine their trust models of the other agents. The

refined trust models are used in future decisions.

4.2 Implementation

The framework can be implemented on robotic hardware or simulation software

and is not language dependent. A Java-based simulation is used to allow portability

between systems. The simulation is a visual depiction of the agents operating in the

environment. The environment consists of a simple building with two doors as shown

in Figure 4.1.

Figure 4.2 depicts the major components of the simulation. The Environment

Controller is an “Eye in the Sky” overseeing the creation and execution of the simula-

tion, but not actively visible in the environment. Attackers and agents move through

the environment. A TI-POMDP is used to model the agents, govern their action

decisions, and distribute rewards. The primary functions and responsibilities of each

component are as follows:

4.2.1 Environment Controller. An Environment Controller initially creates

and randomly distributes a set number of Agents in the space. During the simulation,

the Environment Controller creates and randomly distributes a set number of Attack-

ers along the perimeter of the simulation space. The number of active Attackers at

any given time is limited by a threshold set prior to running the simulation. When the

number of Attackers reaches the threshold limit, the Environment Controller waits

until an Attacker is destroyed before it creates a new Attacker. When it creates an

Attacker, the Environment Controller creates a task and assigns the task to a random

group of agents. This allows the simulation to focus on the interactions between the

Agents, not the sensor capabilities of the Agents and the task distribution process.

32

Figure 4.1: An image of the Defender Simulation with three
Agents and one Attacker.

Figure 4.2: The major components in the trust simulation.

33

This also eliminates a potential trust exploitation where an Agent assigns false tasks

to trustworthy Agents. The number of Agents assigned to each Attacker is random.

Agents without prior task commitments are assigned first. If necessary, Agents with

prior task commitments are assigned. Agents complete the tasks in the order they

arrive to eliminate starvation.

The Environment Controller maintains the current reward level for the active

tasks. The reward level based on whether previous actions were successfully completed

via cooperation. The number of reward levels is equal to the number of Agent trust

levels (set prior to simulation) minus one. If the simulation has three trust levels,

then each action can have either level 1 or level 2 rewards. If Agents successfully

cooperate with a level 1 reward, the next action has a level 2 reward. Higher reward

levels do not change the number of assigned Agents.

The Environment Controller does not maintain trust ratings on the Agents,

assign Agents based on their past performance, or attempt to maximize expected

utility of the task. This forces the individual Agents to track and reason about the

trustworthiness of the other Agents in the environment. If the Environment Controller

tracked the trust ratings of the Agents, it would not assign untrustworthy agents to

tasks, resulting in their isolation. While this action is desired in most scenarios, it

reduces the simulation’s testing ability of the TI-POMDP framework. When known

untrustworthy Agents are assigned to a task, the other Agents tailor their actions to

isolate the untrustworthy Agents and mitigate the damage they cause.

4.2.2 Attackers. Attackers are created at the edge of the environment and

attempt to move toward the center. Since Attackers are not modeled by the TI-

POMDP, they do not receive rewards for reaching the center. The Attackers are

enemies with an initial strength of 100. Once an Attacker’s strength is depleted it is

rendered useless, removed from the environment, and the task of the Agent’s assigned

to defeat the Attacker is complete.

34

4.2.3 Agents. Agents have two mutually exclusive tasks, patrolling the

environment and defeating Attackers. The patrolling behavior consists of randomly

wandering the environment. Once assigned to a defense task, Agents engage and

destroy the Attacker before returning to their patrol duties.

The motion of individual Agents and Attackers is controlled by a behavior-based

architecture [5]. An Agent’s behavior set consists of random walking and going to a

target. The specific behavior is determined by the task assigned to the Agent. All

tasks include the wall following and obstacle avoidance behaviors to help maneuver

through the environment.

Only Agents assigned to a particular task are able to affect that task. If an

unassigned Agent is in the vicinity of the Attacker, it will not engage the Attacker.

This focuses the trust analysis just on the team of Agents assigned to the task.

The Agents do not have to worry about an outside Agent hindering their ability to

complete the task. Unassigned Agents may observe the actions of assigned Agents

and update their trust model accordingly.

An Agent decreases the Attacker’s strength by 25 points every time it chooses

to attack the Attacker. The attack power of 25 points is used to ensure groups of

one or two Agents must engage the Attacker multiple times since it has a strength of

100. A larger group of Agents (four or more) can eliminate the Attacker after a single

engagement. Each action is a single attack by each of Agents assigned to the task.

When an Agent decides to betray another Agent, it adds 15 points to the Attacker’s

strength. The addition to the Attacker’s strength prolongs the engagement but does

not completely counteract another Agent’s action.

Depending on the number of Agents involved and their actions, each engagement

has a unique duration. In the case where two cooperating Agents engage a single at-

tacker, each Agent depletes 25 points from the Attacker. After the two Agents engage

the Attacker a second time, the Attacker is eliminated with each Agent responsible

for 50 points versus a single Agent taking 4 rounds and 100 points. If a cooperating

35

Agent and a betraying Agent engage an Attacker, the cooperating Agent depletes 25

points from the Attacker, and the betraying Agent adds 15 points for a net change of

−10. Two betraying Agents add 30 to the Attackers strength.

4.2.4 TI-POMDP. The TI-POMDP framework is updated when a task is

first identified and Agents are assigned to it. Each Agent uses the decision policy to

decide which action to take. After action execution, the TI-POMDP framework is

updated based on the observations. Figure 3.1 illustrates the TI-POMDP decision

cycle. The TI-POMDP consists of the interactive states, actions, transition function,

observation function, and reward function.

The domain’s interactive state consists of the Agent’s trust model,the task level,

and which Agents are assigned to a task. This is the smallest possible state for this

domain (as opposed to including Agent locations and any other environmental factor).

This size reduction allows the simulation and testing to focus on the uncertainty of

the trust model rather than the uncertainty created by the environment.

The Agent’s action set includes “cooperating,” “working alone,” “betraying,”

“concealing,” or “redeeming” actions. Their choice of action depends on their trust

model. An untrustworthy Agent chooses to “betray” or “conceal” while a trustworthy

Agent chooses to “cooperate,” “work alone,” or “redeem.”

• Trustworthy Agents choosing to “cooperate” diminish an Attacker’s strength

by 25 points. “Cooperating” Agents assume that the other assigned Agents will

diminish an Attacker’s strength by their share.

• Trustworthy Agents choosing to “work alone” also diminish an Attacker’s strength

by 25 points. Agents “working alone” assume that the other assigned Agents

will not diminish an Attacker’s strength and may try to increase the Attacker’s

strength. They expect the engagement to last longer.

• Untrustworthy Agents choosing to “betray” always add 15 points to the At-

tacker’s strength.

36

• Untrustworthy Agents choosing to “conceal” always diminish an Attacker’s

strength by 0.1 points. This action allows a “concealing” Agent to act like

it is helping so unassigned Agents cannot determine an accurate trust rating.

The 0.1 decrease is used to prevent deadlock if a group of “concealing” Agents

are assigned to an Attacker since they eventually reduce the Attacker’s strength

to 0.

• Trustworthy Agents choosing to “redeem” have the same effect as cooperating

Agents, but are making a conscientious decision to work with Agents that do

not trust them. This exposes the Agent to potential betrayal as the Agent

selects a course of action that has a lower immediate expected reward (versus

working alone). “Redeeming” Agents are formerly untrustworthy Agents trying

to reestablish their reputation among the other Agents.

The transition function maps one state to the next based on the Agent’s actions.

The transition function first updates the individual Agent trust models based on the

their actions. At this point, each Agent has a probability of being corrupted or

redeemed based on their actual trust level. The probability of an Agent’s trust level

changing is governed by the corruption and redemption rates given at the start of the

simulation. The rates do not change during the simulation execution. Both rates can

range from 0.0 (never corrupted or redeemed) to 1.0 (always corrupted or redeemed)

and the two rates can be adjusted independently of one another. If the corruption rate

is 0.1 and the redemption rate is 0.3 a trustworthy Agent has a 10 percent chance of

becoming more untrustworthy while an untrustworthy Agent has a 30 percent chance

of becoming more trustworthy. If an Agent is somewhere between trustworthy and

untrustworthy, there is a 0.05 probability (0.5 ∗ 0.1) of becoming less trustworthy and

a 0.15 probability (0.5 ∗ 0.3) of becoming more trustworthy. An Agent knows when

its trust rating changes, but the other Agents are not aware of the change. The final

step of the transition function adds new tasks, removes completed tasks, and sets the

reward level for the next action.

37

The observation function is a probabilistic model of what actions a given Agent

sees within the environment and is tied to the actions Agents take on a task. Agents

assigned to a task are guaranteed to observe the actions of the other Agents assigned

to the same task. Unassigned Agents may observe “cooperating,” “betraying,” and

“redeeming” actions according to a set probability (0.5), but they can not observe

the difference between “working alone” and “concealing” actions. Unassigned Agent

observations are based on probability instead of location with respect to the task so the

unassigned Agents are not rewarded (by receiving better observations) for neglecting

their patrol duties.

The reward function is a distribution based on the collective actions of all Agents

assigned to a specific task. Each Agent receives its reward based on its individual

action with respect to the actions of the team that assigned to the task. The reward

function used in the simulation is based on the Tiger Game reward function [7, 13].

The reward function is designed to value successful “cooperation” and “betrayal”,

penalize unsuccessful “cooperation” and “betrayal”, and allow the safe options of

“work alone” and “conceal.”

• Agents that “work alone” or “conceal” always receive a reward of −1 regardless

of the other Agent’s action choices.

• If all Agents “cooperate,” “work alone,” or “redeem,” the reward for the Agents

that “cooperate” and “redeem” is 10 ∗ t2, where t is the current reward level as

set by the Environment Controller.

• If all Agents “cooperate” or “redeem” except for a single “betray” Agent, the

“betray” Agent receives a reward of 10 ∗ t2 while the other Agents receive a

reward of −100.

• If multiple Agents “betray,” all “cooperate,” “betray,” and “redeem” Agents

receive a reward of −100. The “betray” Agents receive the negative reward

because they betrayed each other.

38

• If a “betray” Agent is not paired with at least one “cooperate” Agent, the

“betray” Agent receives a reward of -100.

The reward level effects the potential reward of a successful cooperation or

betrayal on the task. An Agent’s trust model is composed of the highest reward

level that it believes every other Agent is willing to “cooperate” at. If Agent a’s trust

model indicates that Agent b is trustworthy at a reward level of 3, then Agent a trusts

Agent b when the reward level is 3 or less and does not trust Agent b at higher levels.

Figure 4.3 shows the changes in trusted reward levels as Agents cooperate and

compete with each other. Agent 2’s betrayal level limits the amount of cooperation

between the Agents and indirectly causes Agent 1’s trust level of Agent 2 to change.

Agent 2’s betrayal level changes due to random corruption or redemption caused by

the environment. Initially, Agent 1 trusts Agent 2 up to level 10, but Agent 2 is

actually only trustworthy up to level 6. Once Agent 2 “betrays” Agent 1 (Action 6),

Agent 1’s trust level changes to level 6. Agent 1 is unaware that Agent 2’s betrayal

level changed after Action 6, allowing the “betrayal” at Action 9 which results in

Agent 1 lowering its trust level of Agent 2 to level 3. Since Agent 1 no longer trusts

Agent 2, it “works alone” (Action 12) the next time it encounters an action with a

reward level of 3 which resets the reward level to 0. Agent 2 “redeems” itself (Action

15) after its betrayal level changed. Agent 1 revises its trust level in response to the

redemption.

Assuming the Agents only look at the next action, their decision process focuses

on maximizing the reward for the next action. To decide whether to cooperate, each

Agent reviews its trust model of the other Agents assigned to the task as well as it own

trust rating. If the Agent is trustworthy at the current reward level and trusts the

other Agents at the current reward level, it chooses to “cooperate.” If a trustworthy

Agent does not trust another assigned Agent or does not believe that another Agent

trusts one of the assigned Agents, it chooses to “work alone.” An untrustworthy

Agent attempts to “betray” the other Agents if it believes they are all trustworthy

39

Figure 4.3: Trust interactions between agents.

and that they trust it. Once the Agent “betrays” (Actions 6, 9, and 22), the other

Agents update their trust models by reducing their level of trust in the “betraying”

Agent. Otherwise, an untrustworthy Agent will “conceal” its actions. If the Agent

chooses to “conceal” its actions, it does not help with the task, but it does not hinder

it either. The “conceal” action is not shown in this figure because only two Agents

are in the domain which eliminates the utility of the action. Agents can benefit from

“concealing” in larger domains because the other Agents can not differentiate between

“conceal” and “working alone” allowing the untrustworthy Agent to potentially betray

in the future.

There is an additional case where a trustworthy Agent does not believe the other

Agents trust it. This Agent will choose to “redeem” itself (Action 15) and cooperate

on the task, knowing that it is likely to sustain a penalty since it is doubtful that the

other Agents are planning on cooperating with it. This sacrificial action “redeems”

the Agent, causing the other Agents to update their trust models by increasing their

level of trust in the “redeemed” Agent and deciding to “cooperate” with it on future

tasks.

40

After the Agents act, all Agents within the environment update their individual

trust models based on their observations of the task. The Agents directly involved

with the task are guaranteed to observe the actions (other than the difference between

“work alone” and “conceal”) of the other task participants. Model updates are more

complex for Agents not assigned to the task. If an unassigned Agent does not observe

the task at all, it can not determine which Agent took what action. If an unassigned

Agent does observe the task, it will know if another Agent “cooperates,” “betrays,”

or “redeems” and updates its model accordingly. Assigned Agents update their trust

models of the unassigned Agents based on their probability of observing the task. This

can lead to situations where one Agent incorrectly believes another Agent observed a

betrayal which skews the first Agent’s future expectation.

4.2.5 Decision Policy Calculation. Prior to execution, the TI-POMDP

requires a decision policy as defined in Section 2.2. The decision policy defines what

action to take in a given state. Since decision policies are domain specific, solving the

optimal or approximately optimal policy for a given domain is ideal. The decision

policy for the Defender simulation is discovered through policy iteration [20] with the

aid of behavioral equivalence [16] and alpah-beta minimax pruning [20].

The first step in the decision policy discovery is using behavioral equivalence

to reduce the number of different states. Behavioral equivalence maps similar states

onto one another. Rather than finding a decision for every one of these states, a single

decision can be used for all of the similar states. The simplest method of behavioral

equivalence in the Defender simulation is to collapse the states into eight states. The

eight states are as follows:

• Trustworthy Agent that believes the other assigned Agents are trustworthy and

they trust each other.

• Trustworthy Agent that believes it is not trusted by at least one other assigned

Agent.

41

• Trustworthy Agent that believes the other assigned Agents are trustworthy but

do not trust each other.

• Trustworthy Agent that does not trust at least one other assigned Agent.

• Untrustworthy Agent that believes the other assigned Agents are trustworthy

and they trust each other.

• Untrustworthy Agent that believes it is not trusted by at least one other assigned

Agent.

• Untrustworthy Agent that believes the other assigned Agents are trustworthy

but do not trust each other.

• Untrustworthy Agent that does not trust at least one other assigned Agent.

These eight states are multiplied by the number of reward levels since the de-

cision policy may be different depending on the reward level. In a domain with two

reward levels, every state fits into at least one of the 16 equivalence states. The equiv-

alence states are listed in order of precedence. As an example, a trustworthy Agent

may believe that it is not trusted by another Agent (equivalence state 2) and not

trust at least one other assigned Agent (equivalence state 4). In this case the state is

grouped into equivalence state 2.

Once the equivalence states are determined the policy iteration begins. The

policy iteration conducts a series of runs of the simulation starting from one of the

equivalence states. Each run consists of five action decisions with the cumulative

reward after the fifth decision tracked. A five percent decay rate is used in the future

reward calculation.

Initially, each equivalence state is run twenty times for each of the allowable

actions for that state. If an untrustworthy Agent is not allowed to take a specific

action (an untrustworthy Agent cannot “cooperate,” “work alone,” or “redeem”), the

equivalence states with an untrustworthy Agent do not select that action. The other

Agents in the environment select a random action from the allowable actions in the

42

current state. After the state transition and belief update, the simulation conducts

four additional decisions and updates. The additional decisions are all random.

After twenty runs of the same initial decision, the average cumulative reward

is stored as the expected reward for that initial decision. Once all of the possible

initial decisions are run for an equivalence state, the initial decision with the highest

expected reward is stored as the desired decision for that state. The initial decision

policy consists the desired decisions for every equivalence state.

The process is repeated using the initial decision policy. For each equivalence

state twenty runs are conducted using the initial decision policy and ten runs are

conducted for each allowable action from the equivalence state with a random decision

policy for the four additional decisions. An equivalence state with two possible actions

requires 40 runs during this step (20 with the decision policy, 10 with the first action

and a randomized policy and 10 with the second action and randomized policy). The

runs with the randomized policy are used to explore the reward space. To reduce

the required computation, alpha-beta minimax is used to prune dominated runs that

use the randomized policy. If a run using the randomized policy cannot achieve the

expected reward of the decision policy after 2, 3, or 4 decisions the run is stopped

instead of continuing to a suboptimal end. The maximum possible reward (the highest

reward it could achieve by successfully cooperating for the remainder of the run) is

used in the average expected reward calculation.

At the end of the runs, the initial decision (either from the decision policy or

the randomized runs) with the highest expected reward becomes the desired decision

for the next decision policy. If the desired decision for an equivalence state does

not change from one iteration to the next, the number of additional runs using the

randomized policy is reduced by one half during the next iteration of that equivalence

state. Once the number of additional runs using the randomized policy is less than 2,

the decision for that equivalence state is complete. This decision becomes the decision

policy for that equivalence state.

43

Figure 4.4: An Agent’s decision transitions.

Figure 4.4 shows the potential progression of an Agent’s trust model (circles)

and actions (arrows) through a series of time steps. The actions also serve as tran-

sitions between trust models which are probabilistic as outlined in Table 4.1. The

probabilities are based on the corruption/redemption rate of the environment and

the progression of Agent actions. In an environment with a corruption/redemption

rate of 0.1, a Trustworthy/Trusting Agent has a 10 percent chance of becoming un-

trustworthy (transitioning to model 3 or 4) and a 90 percent chance of remaining

trustworthy (transitioning to model 1 or 2). The probability of actually transitioning

to 1 versus transitioning to 2 is based on the Agent actions. In an environment with

a low corruption/redemption rate, the Agents are more likely to remaining trustwor-

thy and trusting of others (1 to 1 transition). As the corruption/redemption rate

increases, the Agents are more likely to not trust each other (1 to 2 transition). A 3

to 3 transition is always unlikely because once an Agent “betrays,” it usually can not

benefit from repeating that action.

44

Table 4.1: Probability of trust model transitions
based on corruption/redemption rate. Model 1 is
Trustworthy/Trusting. Model 2 is Trustworthy/Not
Trusting. Model 3 is Untrustworthy/Trusting. Model
4 is Untrustworthy/Not Trusting. Model 5 is Trust-
worthy/Not Trusted.

Corruption/

Transitions Redemption Rate

0.1 0.3 0.5

1 to 1 0.72 0.28 0.05

1 to 2 0.18 0.42 0.45

1 to 3 0.08 0.12 0.05

1 to 4 0.02 0.18 0.45

2 to 1 0.036 0.042 0.045

2 to 2 0.864 0.658 0.455

2 to 3 0.004 0.018 0.045

2 to 4 0.096 0.282 0.455

3 to 3 0.009 0.007 0.005

3 to 4 0.891 0.693 0.495

3 to 5 0.10 0.30 0.50

4 to 3 0.009 0.042 0.045

4 to 4 0.891 0.658 0.455

4 to 5 0.10 0.30 0.50

The Agent is initially trustworthy and trusts the other Agents so it decides to

“cooperate.” Depending on the results of its action, the Agent can reach one of four

new trust models. If the Agent was “betrayed” by another during the last task, the

Agent remains trustworthy, but no longer trusts at least one other Agent. The Agent

transitions to the leftmost node of the second row and chooses to “work alone” on

the next task involving the untrusted Agents. This transition occurs with probability

of 0.18, 0.18, and 0.45 in environments with corruption rates of 0.1, 0.3, and 0.5

respectively. If the previous task was successful, the Agent’s trust model stays the

same which leads the Agent to “cooperate” on future tasks. This trust model is

45

represented by the left-center node of the second row. This transition occurs with

probability of 0.72, 0.12, and 0.05 in environments with corruption rates of 0.1, 0.3,

and 0.5 respectively.

There is also a probability that the Agent becomes corrupted after an action. If

the Agent was “betrayed” by another during the last task and the Agent is corrupted,

the Agent transitions to being untrustworthy and does not trust at least one other

Agent (rightmost node of the second row). The Agent’s action choice for this trust

model is to “conceal.” This transition occurs with probability of 0.02, 0.42, and

0.45 in environments with corruption rates of 0.1, 0.3, and 0.5 respectively. If the

last task was successful and the Agent is corrupted, the Agent transitions to being

untrustworthy while still trusting the other Agents (right-center node of the second

row). The Agent chooses to “betray” for this trust model. This transition occurs

with probability of 0.08, 0.28, and 0.05 in environments with corruption rates of 0.1,

0.3, and 0.5 respectively.

These same transitions occur from each of the four trust models with one excep-

tion. If an untrustworthy Agent (either trusting of others or not) is redeemed, that

Agent transitions to a model where it is trustworthy but not trusted by the other

Agents. This model resembles the initial model where the Agent is trustworthy, but

the Agent chooses to “redeem” itself regardless of whether it trusts the other Agents

in the environment. The probability of transitioning to this trust model is equal to

the redemption rate of the environment.

In the simulation Agents look further ahead than just the next action and at-

tempt to maximize their expected reward for a certain number of actions into the fu-

ture. The simulation explores five actions ahead to limit the search space and reduce

the time required to create the model. This look ahead can cause an untrustworthy

Agent to “conceal” in an effort to increase the reward level for a future betrayal. On

the other hand, a trustworthy Agent that currently trusts the other assigned Agents

46

may decide to “work alone” simply because the model has determined that betrayals

are likely to occur at the current reward level.

4.3 Design of Experiments

Three tests are used to evaluate the performance of the TI-POMDP framework.

The first test focuses on the impact of the various simulation settings (number of

Agents, number of reward levels, etc.) on the response variables within the framework.

The second test measures the change simulation run time as the number of agents

involved increases. The final test compares the TI-POMDP framework with the trust

vector [17] modeling approach.

The tests are conducted in two separate environments. In the first environment,

a single agent can overcome a betrayal and still eventually complete the task. This

allows the test to proceed. In the second environment agents can not directly overcome

betrayal. As soon as the Agents discover a betrayal, they call for help from other

trusted agents to deal with the attacker and complete the task. The call for help is

a call to the Environment Controller to add an unassigned agent to the task. The

second environment demonstrates an Agent’s ability to use its trust model to overcome

“betrayals” by adding additional Agents to the task.

4.3.1 Factorial Test. The first test is designed to identify which simulation

settings have the largest impact on the output of the simulation. Each setting that

can be changed in the simulation is called a factor. As the settings are adjusted the

change in output values of the simulation is measured. Significant changes in output

values indicate that the factor has a significant affect on the simulation.

The test is based on a factorial design with mixed level factors [14]. This

means that each factor tested has two or more possible settings. An Analysis of

Variance (ANOVA) is used to determine the level of contribution each factor has on

the performance of the simulation and define a regression model for predicting the

response value for various factor settings.

47

The first design step is to identify factors, their ranges, and specific levels. The

second step is to identify the desired response variable. The final design step is

creating the specific experiment design.

The simulation factors include:

• Number of Agents: the number of Agents operating within the environment.

This test uses 3, 4, and 5.

• Mix of Agent: the simulation has three separate Agent mixes. In the first, all

Agents have the same probability of corruption and redemption. In the second

mix, the Agents are split into two groups where the second group is 10 percent

more likely to be corrupted or redeemed than the first. In the final mix, there

are three groups of Agents. The second group is 10 percent more likely to be

corrupted or redeemed and the third group of the Agents is 20 percent more

likely to be corrupted or redeemed than the first group. This test uses all three

settings.

• Number of Reward Levels: the number of different reward levels an action can

have. This test uses 2, 3, and 4.

• Probability of Corruption: the probability that a given Agent becomes more cor-

rupt every time the transition function occurs. This test uses settings between

0.05 and 0.5 at increments of 0.05.

• Probability of Redemption: the probability that a given Agent becomes less cor-

rupt every time the transition function occurs. This test uses settings between

0.05 and 0.5 at increments of 0.05.

Each test run sets each factor to a specific level (for instance 3 Agents, Agent

complexity at 2, 4 reward levels, corruption rate at 0.2, and redemption rate at 0.45).

These levels do not change for the entire test run and all combinations of levels are

tested in a single replication. The factor levels are designed to fully evaluate the

factor impact within the specific range while still providing insight into the impact of

48

factor settings outside of the tested range (7 Agents or 10 reward levels). Limiting

the number of Agents to 5 avoids the time required to calculate the decision policy

for 6 or more agents. Limiting the corruption and redemption rates to 0.5 avoids the

highly fluctuating environments where Agents cannot predict future trust values.

The experiment limits Probability of Corruption and Probability of Redemption

to the lower end of their potential values because higher values result in rapid changes

in Agent trustworthiness. These rapid changes greatly degrade system performance,

resulting in a situation where Agents no longer trust one another.

The potential response variables include

• Reward Value: the average reward achieved by each Agent.

• Number of “Cooperates”: the number of times an Agent chooses to “cooperate.”

• Number of Successful “Cooperates”: the number times an Agent chooses to

“cooperate” and receives its expected reward versus the total number of times

an Agent chooses to “cooperate.”

Reward value is the primary response variable tracked since it measures the

overall Agent performance. The two percentages are also tracked since they give

insight into an Agent’s decision process. “Betray,” “redeem,” “work alone,” and

“conceal” can be substituted for “cooperate” in the two percentages as well.

Based on 3 settings of number of Agents, 3 reward levels, 3 Agents mixes,

10 corruption rates, and 10 redemption rates, a full factorial matrix includes 2700

separate test cases. The two test environments (Agents can overcome “betrayal” and

Agents must call for help) result in 5400 unique test cases. Running each case 2 times

results in a total of 10800 individual test runs. Each test run for this experiment

consists of the group of Agents completing 50 tasks.

According to Montgomery’s sample size determination method [14], this size of

test has an Type I Error of 0.05 and a Type II Error of 0.01 assuming a response vari-

able standard deviation to noise ratio of 2:1 or less. This means there is a probability

49

of 0.05 that this test will fail to identify an influential factor and a probability of 0.01

that this test will falsely identify a non influential factor as influential.

Statistica™is used to conduct the ANOVA. ANOVA compares the sum of squares

of the factors with the sum of squares of the error to determine which factors influence

the response variable. The ultimate goal of the test is to be able to predict how Agents

perform in a given environment.

4.3.2 Performance Test. The performance test measures simulation execu-

tion time as the number of Agents increases. The amount of time required by the

simulation increases as the number of Agents increases (the domain becomes more

complex). This increase is the result of a more complex decision policy model and a

larger number of Agents making decisions.

This test monitors the time required for a group of Agents to complete 50 tasks.

Group size will be the only variable between test runs with groups ranging from 3 to

10 Agents. Each group size is run 10 times to determine an average time required to

complete 50 tasks.

4.3.3 Comparison Test. The final set of tests is a direct comparison of

action success rates between the TI-POMDP framework and a trust vector modeling

approach [17]. Two types of comparison tests are used. The first test is a modified

version of the Tiger Game introduced by Kaelbling [13] and expanded into a multi-

agent game by Doshi [7] while the second test uses the Defender simulation.

In the multi-agent Tiger Game, two agents must choose which of two doors to

open. Opening one door provides a reward while the other frees a tiger that penalizes

the agent. Agents may open the left door, open the right door, or listen. Listening

has a probability (0.85) of correctly hearing which door hides the tiger. Opening a

door resets the location of the tiger and the reward, starts a new game, and results

in a squeak that lets the other agent know the game was reset.

50

The multi-agent Tiger Game is modified into the Cooperative Tiger Game

(CTG). In the CTG both agents must cooperate to open the door with the reward.

Every time the agents cooperate, the reward value doubles for the next game. One

agent can betray the other by opening the tiger door when the other agent tries to

open the reward door. The betraying agent receives double the reward value while

the betrayed agent is penalized. An agent that believes the other agent is going to

betray him can reset the reward back to its original level. Agent trust levels can

fluctuate which changes the probability that one agent will betray another. Agents

communicate prior to each turn to reach a non-binding agreement on which action

to take. The CTG test uses a 0.05 probability of an agent becoming more corrupt or

more trustworthy.

Figure 4.5 illustrates the state transition process an agent undergoes. It does

not include the belief model update the agent uses to transition between Trusting and

Not Trusting beliefs. It is important to note that the Not Trusting belief applies if the

agent has been corrupted or the agent believes the other agent has been corrupted.

In either situation, the agent chooses to open door with the tiger to maximize its

reward.

The Defender simulation comparison testing has a group of Agents complete 50

tasks using either the TI-POMDP framework or a trust vector model as its action

decision process. In addition, the TI-POMDP framework is tested with a 5 action

horizon and a next action horizon.

The Defender simulation tests are conducted with three number of Agents set-

tings (3, 4, and 5), three reward level settings (2, 3, and 4), the three mix of Agents

settings, and three corruption/redemption rates (0.1, 0.3, and 0.5). There are two

complete replications of these setting combinations. The average reward, number of

cooperations, success rate of cooperations, number of betrayals, and success rate of

betrayals are used to compare the models.

51

Figure 4.5: The state-action-observation transitions for the
Cooperative Tiger Game.

4.4 Summary

Agents use individual trust models to decide how to interact with each other.

When possible Agents attempt to benefit from cooperative actions while minimiz-

ing their vulnerability to betrayal. The Defender Simulation represents a trust-based

multi-agent environment. The simulation provides a tailorable environment that can

be applied to wide range of problems. The outlined testing for this simulation ex-

amines the impact of the simulation settings, the performance of the TI-POMDP

framework, and the compares the TI-POMDP framework to the trust vector model.

52

V. Results and Analysis

The testing outlined in Section 4.3 is designed to evaluate the performance and

capabilities of the Defender Simulation and the TI-POMDP framework. The

testing includes an analysis of the simulation settings that affect the TI-POMDP

results, an estimate of the TI-POMDP performance, and a comparison of the TI-

POMDP with a trust vector model. This chapter presents the results of those tests

and an analysis of the associated capabilities of the TI-POMDP.

5.1 Factorial Test Results

The factorial test is designed to illustrate how five separate factors (number of

agents, types of agents, number of trust levels, probability of corrupting an agent, and

probability of redeeming an agent) impact the five response variables (average reward,

number of successful “cooperates,” total number of “cooperates,” number of successful

“betrays,” and “total number of “betrays”). The test includes two replications of a

full factorial test design [14] with a randomized test run order. The full factorial test

is conducted in both the basic and complex task environments. The results for the

factorial test are divided by response variables.

ANOVA is the primary analytical tool for this test. ANOVA relies on the Sum

of Squares to calculate the F statistic for the level of contribution of each factor. For

instance, in this test the Number of Agents has three different settings (3, 4, and 5

agents) and each test run uses one of these settings. The Sum of Squares due to the

treatment (SSTR) is

n

a∑
i=1

(ȳi· − ȳ··)2, (5.1)

where

• a is the number of factor levels, in this case 3.

• n is the number of samples taken at each factor level.

53

• ȳi· is the mean of all samples with the same factor setting (when a = 1, this is

all samples with 3 agents).

• ȳ·· is the grand mean of all samples.

The SSTR for the Number of Agents is compared to the unexplained variance

or error associated with the data. The error is the variation of the individual data

points around ȳi·. The Sum of Squares estimate of the total error (SSE) is

a∑
i=1

n∑
j=1

(yij − ȳi·)2, (5.2)

where

• a, n, and ȳi· are the same as Equation 5.1.

• yij is an individual data point.

The Mean Square Due to Treatment (MSTR) is

SSTR

a− 1
, (5.3)

and the Mean Square Due to Error (MSE) is

SSE

N − a
, (5.4)

where N is the total number of samples (usually a ∗ n).

The a−1 in MSTR and the N−a in MSE are the number of degrees of freedom

required to calculate those statistics. The F statistic for a treatment is the ratio

F0 =
MSTR

MSE
. (5.5)

As the ratio approaches 1, the MSTR becomes analogous to MSE which means

the treatment has no discernible affect on the outcome data. If the MSTR is signifi-

54

cantly larger than the MSE, the treatment is considered to impact the outcome data.

Significance is determined by the F statistic. Figure 5.1 shows the various compo-

nents used to calculate the Sum of Squares. In this figure, the factor settings are the

different levels of a given factor (for instance number of Agents at 3, 4, 5, and 6), the

grand mean is the average of all of the individual samples, and the group means are

the averages of the individual samples at a specific factor setting. The variance due

to treatment is the difference between the grand mean and each of the group means.

This represents the model variance attributed to the factor (number of Agents). The

variance of the individual samples within a group is the unexplained variance which

is either caused by another factor or is error associated with the process.

Figure 5.1: Sum of Squares Analysis components. This figure shows the compo-
nents used in a notional Sum of Squares analysis. The analysis measures the effect
of a factor with four different settings on the output response value.

5.1.1 Average Reward. Running ANOVA with average reward as the re-

sponse variable returns the Table 5.1. The chart has two entries for every factor, a

linear component and a quadratic component. In addition, the entries “Number of

Agents by Reward Levels,” “Number of Agents by Agent Mix,” etc. are interactions

between two factors. These interactions are the effect specific settings of two factors,

55

such as Number of Agents and Reward Levels, have on the response variable. It can

be the case that a specific setting (say 5 agents and 4 reward levels) results in a large

change to the response variable in comparison with 3 or 4 agents and 4 reward levels

or 5 agents and 2 or 3 reward levels. The columns of the chart are the Sum of Squares,

the degrees of freedom, the Mean Square, the F statistic, and the significance value

p of the F statistic. The p value is the probability that a particular component does

not have an effect on the response variable, with values less than 0.05 signifying an

active factor.

The p values in Table 5.1 indicate that every factor and interaction is significant

except for the linear Agent Mix, the quadratic Agent Mix, and four interactions

involving Agent Mix.

5.1.1.1 Result Impact on ANOVA Assumptions. The large number of

active factors indicates that this data set may have an assumption violation. There are

four assumptions made by ANOVA (independent samples, a completely defined model,

normal distribution of residuals, and equal variance within cells). The independent

samples assumption is satisfied because the runs are collected in a randomized fashion

and each run is separate eliminating the possibility of a timing trend. The test design

ensures model completeness because only the five identified factors change from run

to run, there is not a concern that weather, time of day, or some other factor can

influence the model.

Validating the other two assumptions comes from analyzing the data. Residuals

are the difference between an expected value and the actual value. ANOVA generates

a model that predicts the response variable for a specific group of factor settings. The

difference between the predicted value and the value from the actual data points is the

residual. When plotted, normally distributed residuals look like random noise with

no discernible pattern. Figure 5.2 shows the actual residuals for each of the predicted

values from the model. The definite funneling on the left side of the graph is common

when cell variances are not equal.

56

Table 5.1: Complete ANOVA with average reward as response variable.

Factor SS df MS F p
Number of Agents(L) 5.28 ∗ 1012 1 5.28 ∗ 1012 883.01 0.00
Number of Agents(Q) 1.12 ∗ 1011 1 1.12 ∗ 1011 18.71 0.00
Reward Levels(L) 1.11 ∗ 1014 1 1.11 ∗ 1014 18504.04 0.00
Reward Levels(Q) 2.58 ∗ 1013 1 2.58 ∗ 1013 4312.49 0.00
Agent Mix(L) 6.11 ∗ 109 1 6.11 ∗ 109 1.02 0.31
Agent Mix(Q) 8.26 ∗ 109 1 8.26 ∗ 109 1.38 0.24
Corruption Rate(L) 2.92 ∗ 1013 1 2.92 ∗ 1013 4886.83 0.00
Corruption Rate(Q) 3.17 ∗ 1012 1 3.17 ∗ 1012 530.20 0.00
Redemption Rate(L) 6.72 ∗ 1012 1 6.72 ∗ 1012 1123.79 0.00
Redemption Rate(Q) 5.52 ∗ 1011 1 5.52 ∗ 1011 92.32 0.00
Number of Agents(L)
by Reward Levels(L)

6.32 ∗ 1012 1 6.32 ∗ 1012 1055.57 0.00

Number of Agents(L)
by Agent Mix(L)

7.19 ∗ 109 1 7.19 ∗ 109 1.20 0.27

Number of Agents(L)
by Corruption Rate(L)

4.41 ∗ 1010 1 4.41 ∗ 1010 7.38 0.01

Number of Agents(L)
by Redemption Rate(L)

1.48 ∗ 1011 1 1.48 ∗ 1011 24.72 0.00

Reward Levels(L)
by Agent Mix(L)

9.55 ∗ 109 1 9.55 ∗ 109 1.60 0.21

Reward Levels(L)
by Corruption Rate(L)

3.53 ∗ 1013 1 3.53 ∗ 1013 5904.70 0.00

Reward Levels(L)
by Redemption Rate(L)

8.27 ∗ 1012 1 8.27 ∗ 1012 1381.49 0.00

Agent Mix(L)
by Corruption Rate(L)

1.00 ∗ 1010 1 1.00 ∗ 1010 1.67 0.20

Agent Mix(L)
by Redemption Rate(L)

8.46 ∗ 109 1 8.46 ∗ 109 1.41 0.23

Corruption Rate(L)
by Redemption Rate(L)

5.04 ∗ 1011 1 5.04 ∗ 1011 84.29 0.00

Error 3.22 ∗ 1013 5379 5.98 ∗ 109

Total SS 2.64 ∗ 1014 5399

The issue with unequal variance is that ANOVA incorrectly estimates the mean

of cells with large variances. The MSE for these cells becomes falsely small and the

mean for the cell appears to be an actual trend influencing the response variable.

57

Figure 5.2: Predicted Values vs Residual Values.

Using a contractive transform on the response variable values can pull the data

together and reduce the variance. Contractive transforms include square root and

log functions. Applying contractive transforms to the data set does not reduce the

unequal variances to an acceptable level for analysis.

Although the assumptions violation (unequal variances) can not be remedied,

analysis using resampling does not require the assumption of equal variance. Resam-

pling [9] draws repeated samples from our data set. These samples are used describe

the entire population. The only assumptions made by resampling are the model is

completely defined and the data represents the distribution of population values.

The resampling technique used in this paper breaks the factorial data set into

several subsets according to the factor settings. For instance, one subset contains all

of the test runs with 3 Agents, while another contains all the 4 Agent runs and a third

has the 5 Agent runs. Each factor is broken down in this manner with the subsets of

number of Agents, reward levels, and Agent complexity having 1800 runs each while

the corruption and redemption rate subsets have 540 runs each.

58

Using the Resampling Toolkit add-in for Excel™, 200 instances of the response

variable (in this case average reward for the group of Agents) are randomly selected

from the 3 Agents data subset. The selections are done with replacement, so the

same data point may be used more than once. The average of the 200 data points is

collected as an estimate of the overall population mean for a test run with 3 Agents

in the environment (regardless of the other factor settings). This process is repeated

10,000 times for the 3 Agent subset as well as every other subset.

The average of the 10,000 population mean estimates becomes the actual re-

sampled mean estimate with standard deviation also based on the 10,000 resampled

points. Figure 5.3 shows the mean average reward for each Agent size with 95 percent

confidence intervals. Average reward is not bounded. The graph indicates that the

number of Agents in the environment has a significant effect on the average reward

of the Agents. As the number of Agents increases, the average reward decreases. The

change in reward is attributed to the higher probability that one or more Agents is cor-

rupt in an environment with more Agents. This trend indicates that the TI-POMDP

results are influenced by the number of Agents in the environment. As the size of the

environment increases the average individual reward decreases due to Agents partic-

ipating in fewer tasks and tasks with more assigned Agents have a higher probability

of “betrayal” attempts which reduces the overall reward for the task.

Figure 5.4 shows the mean average reward for each reward level with 95 percent

confidence intervals using resampling. Average reward is not bounded. The graph

shows a significant quadratic increase in average reward as the reward level increases.

This increase is expected since the reward is based on the square of the reward level.

This trend indicates that the TI-POMDP results are influenced by the number of

Agents in the environment. As the reward structure of the environment changes to

benefit the Agents, the average individual reward increases because the TI-POMDP

is able to leverage the higher rewards.

59

Figure 5.3: Average reward based on the number of Agents
in the Environment.

Figure 5.4: Average reward based on the number of reward
levels.

Figure 5.5 shows the mean average reward for each Agent mix with 95 percent

confidence intervals using resampling. Average reward is not bounded. While there is

60

a difference between the average reward of mix 1 (all Agents have the same corruption

rate) and mix 2 (2 groups of Agents, where one group has a 10 percent higher proba-

bility of being corrupted than the other group), there is not a difference between mix

2 and mix 3 (3 groups of Agents, where one group has a 10 percent higher probability

of being corrupted and a second group has a 20 percent higher probability than the

baseline group). This indicates that a single group operating with a higher corruption

rate can achieve higher rewards than a uniform group, but additional groups do not

achieve a similar benefit. Since the difference in means between mix 1 and mix 2 is

only 1600 reward points (2.2 percent of average reward), the effect of agent mix is

negligible. The lack of effect indicates that the TI-POMDP is not heavily influenced

by heterogeneous Agents.

Figure 5.5: Average reward based on the mix of the Agents
in the Environment.

Figure 5.6 shows the mean average reward for each corruption rate with 95

percent confidence intervals using resampling. Average reward is not bounded. The

graph shows a significant exponential decrease in average reward as the corruption

rate increases. This increase is attributed to Agents not “cooperating” while “be-

61

trays” become ineffective with the increasing corruption rate. This trend indicates

that the trustworthiness of the environment has a large impact on the TI-POMDP.

In low corruption environments, the TI-POMDP is able to “cooperate” extensively.

The TI-POMDP isolates (“works alone” or “conceals”) in high corruption environ-

ments. In between, the TI-POMDP has a steady decrease in rewards as it balances

“cooperating” and isolating actions.

Figure 5.6: Average reward based on the probability of Agent
corruption in the Environment.

Figure 5.7 shows the mean average reward for each redemption rate with 95

percent confidence intervals using resampling. Average reward is not bounded. The

graph shows a significant exponential increase in average reward as the redemption

rate increases. The higher redemption rate increases the probability that an Agent is

redeemed before it can “betray,” allowing the Agent to continue “cooperating” and

increasing the reward for each action. The TI-POMDP is affected by the environ-

ment’s redemption rate, but not to the same extent as the corruption rate. Higher

redemption rates reduce the potential for corruption because Agents may be redeemed

before they can “betray.”

62

Figure 5.7: Average reward based on the probability of Agent
redemption in the Environment.

For the rest of the factor analysis, only the resampling results are shown since

the unequal variances affect the entire data set.

5.1.2 “Cooperates”. “Cooperates” is the number of times Agents attempt to

“cooperate” and the number of times the Agents successfully “cooperate.” Figure 5.8

shows the number of times Agents try to “cooperate” and the number of times they

succeed for each Agent size with 95 percent confidence intervals using resampling.

The number of “cooperates” ranges from 0 to ∞. The graph indicates that Agents

“cooperate” less as the number of Agents increases. The fewer “cooperates” are due

to an increase in the number of Agents assigned to a task and a higher probability that

one of the Agents does not trust another Agent. The success rate of “cooperates” also

decreases as the number of Agents increases as seen in Table 5.2. The TI-POMDP

becomes less “cooperative” in larger environments because more Agents are assigned

to a task which increases the probability that the Agents do not trust at least one

assigned Agent. In this particular domain, the average task has just over half the

Agents assigned to it.

63

Figure 5.8: Number of cooperates and successful cooperates
based on the number of Agents in the Environment.

Figure 5.9 shows the number of times Agents try to “cooperate” and the num-

ber of times they succeed for each reward level with 95 percent confidence intervals

using resampling. The number of “cooperates” ranges from 0 to ∞. The graph shows

a significant increase in both “cooperates” attempted and successful “cooperates” as

reward level increases. This increase is due to Agents “cooperating” on lower level

tasks to achieve higher rewards later. Table 5.2 shows the success rate of “cooperates”

is steady for the first two levels, but increases at the third level. The TI-POMDP

attempts to maximize its reward by “cooperating” more in environments with higher

reward levels. The higher levels generate higher payoffs, so the Agents, either trust-

worthy or deceitful, “cooperate” to get to the maximum reward level.

Figure 5.10 shows the number of times Agents try to “cooperate” and the num-

ber of times they succeed for each Agent mix with 95 percent confidence intervals

using resampling. The number of “cooperates” ranges from 0 to ∞. The graph in-

dicates that Agent mix does not have a discernible impact on “cooperating.” The

64

Figure 5.9: Number of cooperates and successful cooperates
based on the number of reward levels.

“cooperate” success rate in Table 5.2 does not significantly change with the Agent

mix. Once again, the TI-POMDP is not affected by a heterogeneous group of Agents.

Figure 5.10: Number of cooperates and successful cooperates
based on the mix of the Agents in the Environment.

65

Figure 5.11 shows the number of times Agents try to “cooperate” and the num-

ber of times they succeed for each corruption rate with 95 percent confidence intervals

using resampling. The number of “cooperates” ranges from 0 to ∞. The graph shows

that corruption rate decreases “cooperate” attempts and successes exponentially. As

all Agents become less trustworthy, the Agents become less willing to “cooperate.”

Table 5.2 shows that the success rate of “cooperates” decreases to 0.6 before leveling

off. The TI-POMDP becomes less likely to choose to “cooperate” as the probability

of Agent corruption increases.

Figure 5.11: Number of cooperates and successful cooperates
based on the probability of Agent corruption in the Environ-
ment.

Figure 5.12 shows the number of times Agents try to “cooperate” and the num-

ber of times they succeed for each redemption rate with 95 percent confidence intervals

using resampling. The number of “cooperates” ranges from 0 to ∞. The graph shows

an increase in the number of “cooperates” and the number of successful “cooperates”

as redemption rate increases. While both attempts and successes increase as the re-

demption rate increases, the attempts increase more. This results in a lower success

rate at higher redemption rates. Table 5.2 shows the diminishing success rate that

66

Table 5.2: Cooperation success rate for each factor
setting.

Setting Number of Reward Agent Corruption Redemption
Agents Level Mix Rate Rate

1 76.1 70.6 71.9 88.8 79.6
2 70.6 69.1 71.8 81.4 75.6
3 66.9 74.9 71.8 74.9 74.6
4 - - - 70.7 72.4
5 - - - 67.1 71.7
6 - - - 64.4 71.2
7 - - - 62.5 70.3
8 - - - 60.6 70.0
9 - - - 60.2 70.2
10 - - - 59.2 70.2

levels off at 0.7. The TI-POMDP is able to attempt more “cooperates” because the

Agents are less likely to be corrupt for long periods of time.

Figure 5.12: Number of cooperates and successful cooperates
based on the probability of Agent redemption in the Environ-
ment.

67

5.1.3 “Betrays”. “Betrays” includes the number of times Agents attempt to

“betray” and the number of times the Agents successfully “betray.” Figure 5.13 shows

the number of times Agents try to “betray” and the number of times they succeed for

each Agent size with 95 percent confidence intervals using resampling. The number

of “betrays” ranges from 0 to ∞. The graph shows a constant linear decrease Agent

“betrayals” as the number of Agents increases. The fewer “betrays” are due to an

increase in the number of Agents assigned to a task and a higher probability that one

of the Agents assumes it is not the only Agent attempting to “betray.” The success

rate of “betrays” also decreases as the number of Agents increases as seen in Table

5.3. The TI-POMDP is less likely to attempt to “betray” in larger environments

because the tasks have more Agents assigned to them, increasing the probability that

at least one Agent is already not trusted.

Figure 5.13: Number of betrays and successful betrays based
on the number of Agents in the Environment.

Figure 5.14 shows the number of times Agents try to “betray” and the number

of times they succeed for each reward level with 95 percent confidence intervals using

resampling. The number of “betrays” ranges from 0 to ∞. The graph shows a sig-

68

nificant increase in both “betrays” attempted and successful “betrays” as the reward

levels go from 2 to 3, but the trends decrease as the level goes to 4. The changes are

due to Agents building trust on low reward level tasks to “betray” on high reward

level tasks. As the number of levels continues to increase, Agents are more apt to

wait for the highest reward levels, which occur rarely and the Agent may be redeemed

prior to reaching those levels. Table 5.3 shows the success rate of “betrays” is steady

for the first two levels, but decreases at the third level. After an initial jump, the

TI-POMDP actually decides to “betray” less as the reward level increases because the

“cooperating” to get to higher reward levels is in the Agent’s best interests. While

the Agents “cooperate” on several tasks to drive up the reward level they can be

redeemed before they reach the level they wanted to “betray” at. Additionally, since

the Agents complete a set number of tasks, they “cooperate” on a large number of

low reward tasks to get to the high reward.

Figure 5.14: Number of betrays and successful betrays based
on the number of reward levels.

Figure 5.15 shows the number of times Agents try to “betray” and the number

of times they succeed for each Agent mix with 95 percent confidence intervals using

69

resampling. The number of “betrays” ranges from 0 to ∞. The graph indicates

that Agent mix does not have a noticeable impact on “betraying.” The “betray”

success rate in Table 5.3 does not significantly change with the Agent mix either.

The TI-POMDP is not influenced by these heterogeneous groups of Agents.

Figure 5.15: Number of betrays and successful betrays based
on the mix of the Agents in the Environment.

Figure 5.16 shows the number of times Agents try to “betray” and the number

of times they succeed for each corruption rate with 95 percent confidence intervals

using resampling. The number of “betrays” ranges from 0 to ∞. The graph shows

that corruption rate increases “betray” attempts and successes up to a point before

the attempts and successes decrease. The peak of the “betrays” occurs with cor-

ruption rates between 0.15 and 0.3. In this range, the probability is that only one

Agent is corrupted at a time. As all Agents become less trustworthy, the Agents

become less willingly to “betray” since they do not trust the other Agents. Table 5.3

shows that the success rate of “betray” decreases to 0.64. The environment corrup-

tion rate influences the TI-POMDP’s usage of “betrayals.” In very trustworthy and

very corrupt environments, the TI-POMDP does not “betray.” In the very trustwor-

70

thy environment, there are not any corrupt Agents (Utopian society). In the very

untrustworthy environment, everyone is corrupt so there is no benefit to betrayal

(honor among thieves). The TI-POMDP does try to “betray” in slightly corrupt

environments because only a few Agents become untrustworthy at any given time.

Figure 5.16: Number of betrays and successful betrays based
on the probability of Agent corruption in the Environment.

Figure 5.17 shows the number of times Agents try to “betray” and the number

of times they succeed for each redemption rate with 95 percent confidence intervals

using resampling. The number of “betrays” ranges from 0 to ∞. The graph shows

an increase in the number of “betrays” and the number of successful “betrays” as

redemption rate increases. As the probability of an Agent getting redeemed increases,

newly corrupted Agents are able to betray the newly redeemed Agents. Table 5.3

shows success rate staying around 0.73. The environment redemption rate increases

the TI-POMDP’s usage of the “betray” decision because Agents are more trusting of

each other when a given Agent is only corrupted for one or two actions.

As an excursion test, if the probability of corruption is 0.99 and the probability

of redemption is 0.01, the system stops “cooperating” and “betraying” completely.

71

Figure 5.17: Number of betrays and successful betrays based
on the probability of Agent corruption in the Environment.

Table 5.3: Betrayal success rate for each factor set-
ting.

Setting Number of Reward Agent Corruption Redemption
Agents Level Mix Rate Rate

1 76.3 74.3 73.3 90.6 71.1
2 72.7 75.7 73.0 84.5 71.7
3 69.4 69.0 72.6 80.0 72.7
4 - - - 77.3 72.5
5 - - - 72.7 72.5
6 - - - 71.6 73.2
7 - - - 68.9 73.2
8 - - - 66.6 73.5
9 - - - 65.3 73.1
10 - - - 64.1 73.5

The Agents always choose to “work alone” or “conceal” and the average reward is

-2573 because the Agents lose 1 point every time they act and the majority of their

actions are “conceal” which does not quickly destroy an attacker.

72

5.2 Performance Test Results

The performance test measure the time required to complete 50 tasks by 3, 4,

or 5 Agents. Each test run uses a homogeneous group of Agents. For each task, the

Environment Controller selects a randomly sized subset of the group of Agents to

perform the task. After each action, Agents have 0.25 probability of becoming more

corrupt or trustworthy. The reward level setting for these runs is 2.

Figure 5.18 depicts the simulation time required to complete 50 tasks for 3, 4,

and 5 Agents. The steep trend between 4 and 5 Agents is indicative of the exponential

increase with respect to the overall number of Agents. Since τ contains n + (n− 1)2

ratings and each rating can take one of two values (the number of reward levels),

the state space difference between 4 and 5 agents is 221 − 213 = 2088960. The size

difference between 5 and 6 agents reaches 2145286496. While the behavior equivalence

approximation method reduces the amount of search space visited, the total search

space for 6 Agents is 1000 times larger than the search space for 5 Agents (231/221 =

28 = 1024).

The bulk of the computation time comes from learning the model. Figure 5.19

shows the time required to complete 50 tasks for 3 t o10 Agents when they do not

have to learn the policy model. In this case, the Agents just follow their current

trust ratings of the other Agents. The trend indicates that executing the TI-POMDP

updates is linear with respect to the number of Agents in the environment while

learning the policy suffers from exponential growth.

5.3 Comparison Test Results

Two comparison tests are used to measure the difference between the TI-POMDP

model and a Trust Vector model. The Trust Vector Model stores the five previous

actions of the other Agents. The Trust Vector length of five is consistent with the

TI-POMDP horizon of five. While the TI-POMDP is looking ahead five steps, the

Trust Vector looks at the previous five steps. Trustworthy actions enter the model

73

Figure 5.18: Time required for a number of Agents to com-
plete 50 tasks.

Figure 5.19: Time required for a number of Agents to com-
plete 50 tasks without learning a decision model.

as a 1 while untrustworthy actions enter as a -1. Every time a new action occurs,

the action is inserted into the first model position, shifting the previous actions over.

74

Table 5.4: Normalized average rewards and the av-
erage difference between agent rewards.

Average Reward

Average Reward Difference

Between Agents

TI-POMDP 1.0 0.29

Trust Vector 0.83 0.20

During the shift, a decay function is used to reduce the impact of previous actions on

the current model. For this testing, the decay function reduces the weight of previous

actions by five percent each time a new action is inserted. The five percent decay

rate is consistent with the five percent reward decay used by the TI-POMDP. The

Trust Vector model is used because it handles the trust modeling in a very different

manner from the TI-POMDP which already relies on experience modeling. Addition-

ally, the Defender simulation does not have the communication network required for

reputation modeling.

The first test uses the CTG. Agents must locate the tiger and the reward and

decide whether to cooperate with one another, betray each other, try to redeem

themselves, or reset the game so the other agent cannot betray them. Table 5.4

shows the normalized reward levels obtained by two trust models and the typical

difference in rewards achieved by the two agents during the same game. If the higher

scoring agent achieved 100 points using the TI-POMDP algorithm, the other agent’s

score was twenty-nine points lower. On average, TI-POMDP agents scored higher

than trust vector agents. The TI-POMDP algorithm reduced the number of reset

and redemption occurrences at lower reward levels which allowed more cooperation

and higher scores. The vector trust had a large increase of resets because the memory

function would make the agent suspicious. Table 5.5 shows the percentage of time

the agents take a particular action for both of the trust models.

The second test uses the Defender simulation. Both trust models are tested

with 3, 4, and 5 Agents, three separate reward levels (1, 2, and 3) and three separate

75

Table 5.5: Percentage of agent actions for different
trust algorithms.

Agent Action TI-POMDP Trust

Vector

Cooperate 79.5 70.2

Betray 7.4 5.3

Redeem 10.1 1.6

Reset 3.0 22.9

levels of corruptions/redemption (0.1, 0.3, and 0.5). The models are also tested with

the three different Agent mixes. The number of times Agents choose to cooperate or

betray each other are tracked. The TI-POMDP is tested with an action horizon of 1

and 5.

The “cooperate” and “betray” actions are the high risk/high reward choices

for the domain. Even though “betray” actions are considered bad, successfully “be-

traying” other “cooperating” Agents results in a large reward indicating that the

“betraying” Agent made a good decision.

Table 5.6 illustrates the average number of times Agents choose to “cooperate”

or “betray” over the course of 50 Attackers. Since each Attacker requires multiple

actions before it is destroyed, Agents can take hundreds of total actions for 50 Attack-

ers. Overall, the TI-POMDP model with a horizon of 5 achieves higher “cooperate”

and “betray” success rates than the Trust Vector model. The Trust Vector and the

TI-POMDP with a horizon of 1 decide to “cooperate” and “betray” more, but are less

successful, which increases the number of required actions. As expected, the average

number of times Agents “cooperate” decreases while “betrays” increases as the prob-

ability of changing trustworthiness (Corruption/Redemption Rate) increases. This is

due to the fact that a corrupted Agent can immediately attempt to ‘betray” while a

redeemed Agent must first regain the trust of others before it can “cooperate.”

76

Table 5.6: Number of times Agents choose to “co-
operate” or “betray” using the TI-POMDP and Trust
Vector models. The success rates indicate the per-
centage of “cooperates” and “betrays” that achieve
the expected reward.

Corruption/Redemption

Model Action Rate

0 .1 0 .3 0 .5

Cooperations 94 .1 91.3 85.0

TI-POMDP Cooperation Success Rate 83 .5 70.0 61.0

Horizon 5 Betrays 15 .9 31.4 40.0

Betrayal Success Rate 79 .9 70.0 67.0

Cooperations 103.6 97.4 90.7

TI-POMDP Cooperation Success Rate 70 .2 58.6 47.9

Horizon 1 Betrays 19 .3 42.5 57.0

Betrayal Success Rate 68 .7 60.2 55.8

Cooperations 103.4 79.5 68.6

Trust Vector Cooperation Success Rate 70 .7 63.9 57.1

Betrays 42 .0 62.8 74.8

Betrayal Success Rate 63 .4 60.5 58.6

Figures 5.20 and 5.21 show that successful “cooperate” actions decrease and

successful “betray” actions increase as the corruption/redemption rate increases. The

drop in “cooperate” success is a result of fewer “cooperate” attempts and the higher

probability that an Agent immediately becomes corrupt after redeeming itself. The

“betray” success increase comes from the larger number of “betray” attempts that

occur as the corruption/redemption rate rises.

Table 5.7 illustrates the impact of the number of Agents, the number of reward

levels, and the Agent complexity has on the success of “cooperate” and “betray”

actions. While none of the factors have an affect on the “betray” success rate, two

factors affect the “cooperate” success rate. “Cooperate” success decreases as the

number of Agents increases. The decrease is due to larger numbers of Agents being

77

Figure 5.20: The effect corruption/redemption rate has on
“cooperate” success.

assigned to tasks which increases the probability that one of them is untrustworthy.

Increasing the number of reward levels improves the number of “cooperate” successes.

This increase is due to untrustworthy Agents choosing to “cooperate” when the re-

ward level is low. The sharp decrease in “cooperate” success between Agent mix 1

(homogeneous set of Agents) and 2 (1 group of Agents is 10 percent more likely to be

corrupted than the other group of Agents) for the TI-POMDP appears to be a data

anomaly as that trend is not present in the rest of the test.

Table 5.8 shows the average number of each action chosen by the Agents. While

all models have a large number of Agents working alone and concealing their actions,

these individual behaviors account for nearly 66 percent of the Trust Vector and TI-

POMDP horizon 1 actions versus 56 percent of the TI-POMDP horizon 5 actions.

The lack of cooperation is the driving factor behind the Trust Vector requiring 1.5

times the number of actions as the TI-POMDP.

Table 5.9 shows the average reward of the Agents using the two models for each

corruption/redemption rate. The TI-POMDP achieves significantly higher rewards

78

Figure 5.21: The effect corruption/redemption rate has on
“betray” success.

due to the increased success of “cooperate” and “betray” actions (positive rewards

instead of -100 rewards) and less use of “work alone” and “conceal” actions (-1 re-

wards). While the Trust Vector and the TI-POMDP with a horizon of 1 “cooperate”

and “betray” more, those actions are less successful which reduces the overall reward.

In both the CTG and the Defender simulation, the TI-POMDP outperformed

the trust vector with a decay function of five percent. The TI-POMDP requires 36.2

percent fewer actions than the trust vector model to accomplish the 50 tasks. This

reduction in actions results in a 3.8 times higher reward.

5.4 Summary

The TI-POMDP testing focuses on how a specific domain influences the decision

model’s output, the impact of environment size on the computation time of the model,

and a direct comparison of the TI-POMDP with a trust vector model. The factorial

analysis shows that factors influencing the reward, either directly (reward level) or

indirectly (number of Agents, corruption and redemption rates) impact the decisions

79

Table 5.7: Impact of simulation variables on “co-
operate” and “betray” success for each corruption/re-
demption rate.

Factor Setting
Model Factor Action

1 2 3

Number of Cooperate 87.4 62.0 48.9

Agents Betray 20.9 21.7 20.3

TI-POMDP Reward Cooperate 41.7 69.5 87.0

Horizon 5 Levels Betray 15.8 24.6 22.6

Agent Cooperate 75.4 55.4 67.5

Complexity Betray 20.4 21.1 21.5

Number of Cooperate 93.2 81.7 77.6

Agents Betray 22.8 27.9 24.5

TI-POMDP Reward Cooperate 83.2 87.5 89.1

Horizon 1 Levels Betray 21.5 22.9 21.4

Agent Cooperate 83.5 79.2 84.6

Complexity Betray 22.3 24.7 27.1

Number of Cooperate 70.1 64.2 54.2

Agents Betray 58.3 60.2 62.9

Reward Cooperate 52.5 59.3 70.2
Trust Vector

Levels Betray 59.0 61.6 62.2

Agent Cooperate 56.4 60.1 63.3

Complexity Betray 57.3 61.9 64.7

and output of the TI-POMDP. Performance testing demonstrates that increases in

environment size (number of Agents) exponentially increases the time required to

learn decision policies and linearly increases the decision execution time. Comparison

testing indicates that the TI-POMDP outperforms the trust vector method with a

decay function of five percent in both the Defender simulation and the CTG.

80

Table 5.8: Average number of times agents choose
each action.

TI-POMDP TI-POMDP
Action

Horizon 5 Horizon 1
Trust Vector

Cooperate 90.1 97.2 88.8

Work Alone 91.8 127.3 194.2

Betray 29.1 39.6 55.7

Conceal 110.9 157.2 180.4

Redeem 39.4 38.3 46.8

Table 5.9: The average reward of the Agents using
each model based on Corruption/Redemption Rate.

Corruption/

Model Redemption Rate

0.1 0.3 0.5

TI-POMDP(Horizon 5) 1667.0 1111.7 688.0

TI-POMDP(Horizon 1) -57.3 124.5 218.8

Trust Vector -136.4 73.6 143.8

81

VI. Conclusions

A cooperative system allows a group of agents to perform complex tasks while

working toward the common good. The agents decide to utilize the talents of

other agents by relying on their willingness to cooperate which is a product of mutual

trust between agents. Modeling the interaction of trust and agent decisions provides

an analysis of the effectiveness of the cooperative system.

This research merges the high level decision reasoning of a multi-agent environ-

ment with the individual oversight of trust modeling. The end result is a decision

framework that allows unique agents to evaluate the trustworthiness of one another.

The agents determine whether to work with other agents that may have different ca-

pabilities and different trust models. This investigation does not examine the impact

of an agent operating completely outside the framework or a group of agents working

together to subvert the ability of the framework.

The TI-POMDP framework outlined in Chapter III accomplishes the first re-

search objective in Chapter I. It models a complete multi-agent environment by

adding a trust model to the I-POMDP decision process. The Agents analyze their

current state, estimate the effect of their potential decisions, and select the decision

that is most likely to have the greatest future benefit. A key component of the entire

decision process is the Agent’s level of trust regarding the other Agents it interacts

with. This trust model helps determine the current state belief and controls the

reward function of the Agent.

The Defender simulation in Chapter IV fulfills the second research objective in

Chapter I. It creates a cooperative environment where Agents eliminate threats and

obtain individual rewards through cooperation and betrayal. The simulation uses

the TI-POMDP track the Agent’s trust ratings and makes action decisions based on

those ratings. Ultimately, an Agent’s success in this environment is dependent on the

accuracy of its trust model of the other Agents.

82

6.1 Research Contributions

This research presents a novel model for cooperative multi-agent environments

where agents are potentially corrupt. It combines traditional trust modeling in Section

2.3 with a multi-agent decision process in Section 2.2 to model the interactions of a

group of agents.

6.2 Research Conclusions

Simulation testing described in Chapter V includes factor analysis, performance

testing, and comparison testing and illustrates the ability of the TI-POMDP to ef-

fectively reason within the simulation domain. The simulation factor analysis shows

that the number of Agents in the environment and the environment corruption rate

negatively impact Agent rewards and “cooperation” ability, while rewards levels and

redemption rate have a positive impact. Comparison testing between the TI-POMDP

and a trust vector model with five percent decay satisfies the third research objective

in Chapter I. Agents using the TI-POMDP model achieved 3.8 times the average

reward of Agents using a trust vector model.

The simulation demonstrates the TI-POMDP’s ability to allow Agents to make

decisions based on their level of trust and model of the environment. The Agents

continuously update their trust models and state beliefs to select what is predicted

to be the most beneficial action at a given time. The combination of trust modeling

and decision making enables the group of Agents to “cooperate” with one another to

achieve higher collective rewards.

6.3 Future Work

The future research with respect to the TI-POMDP framework can be divided

into two basic categories, improving the individual components of the framework and

finding the exploitable areas of the trust model. Both categories attempt to improve

the decision quality of the TI-POMDP.

83

• Policy Learning: the behavioral equivalence [16] policy learning method used

in this thesis is effective for small problems, but it did not scale well. Find-

ing a better solution would allow this simulation to tackle more complex trust

problems.

• Differing Agent Trust Models: the simulation tested uses identical trust models

for all of the Agents. If one Agent’s trust model is based on a trust vector

representation [17] while another uses a reputation model [18] the strengths and

weaknesses of the two models may affect the output of the simulation.

• Dynamic Trust Models: the Agents currently use a single trust model in their

decision process. Utilizing multiple trust models, similar to adaptive trust mod-

eling [10], could help an Agent make better decisions.

• TI-POMDP exploitation: the assumptions made by the simulation limit the

environment. Expanding what the environment allows can significantly impact

the performance of the TI-POMDP. The specific limitations include allowing

Agents to influence tasks they are not assigned to, allowing rogue Agents to

team up and cooperate together to drive up trust, moving the task assignment

to Agents which allows false tasks, and allowing untrustworthy Agents to “coop-

erate” versus just “betray” or “conceal.” Exploring the impact of these factors

can give greater insight into the ability of the TI-POMDP to reason over more

complex domains.

6.4 Final Remarks

Groups of autonomous agents can be leveraged to complete complex tasks be-

yond the individual agent capabilities. Success of these interactions requires coordi-

nation and cooperation between the agents, which implies a level of trust between

them. Without accurate trust models an autonomous agent may be susceptible to

exploitation, limiting their utility.

84

Bibliography

1. Azzedin, Farag, Ahmad Ridha, and Ali Rizvi. “Fuzzy Trust for Peer-to-Peer
Based Systems”. Proceedings of World Academy of Science, Engineering and
Technology, 21:123–127, 2007.

2. Barber, K. Suzanne and Joonoo Kim. “Belief Revision Process Based on Trust:
Agents Evaluating Reputation of Information Sources”. Proceedings of the work-
shop on Deception, Fraud, and Trust in Agent Societies held during the Au-
tonomous Agents Conference, 73–82. 2001.

3. Bernstein, Daniel S., Robert Givan, Neil Immerman, and Shlomo Zilberstein.
“The Complexity of Decentralized Control of Markov Decision Processes.” Math-
ematics of Operations Research, volume 27, 819–840. 2002.

4. Boutilier, Craig. “Planning, Learning and Coordination in Multiagent Decision
Processes”. Theoretical Aspects of Rationality and Knowledge, 195–210. 1996.

5. Brooks, Rodney A. “A Robust Layered Control System for a Mobile Robot”.
IEEE Journal of Robotics and Automation, 2:14–23, 1986.

6. Damer, Steven and Maria Gini. “Achieving Cooperation in a Minimally Con-
strained Environment”. Proceedings of the Twenty-Third Association for the Ad-
vancement of Artificial Intelligence Conference on Artificial Intelligence, 57–62.
2008.

7. Doshi, Prashant. “A Framework for Optimal Sequential Planning in Multiagent
Settings.” Association for the Advancement of Artificial Intelligence, 985–986.
2004.

8. Doshi, Prashant and Piotr J. Gmytrasiewicz. “A Particle Filtering Based Ap-
proach to Approximating Interactive POMDPs”. Association for the Advance-
ment of Artificial Intelligence, 969–974. 2005.

9. Efron, Bradley. “Bootstrap Methods: Another Look at the Jackknife”. Annals
of Statistics, 7:1–26, 1979.

10. Fullam, Karen K. Adaptive Trust Modeling in Multi-agent Systems: Utilizing
Experience and Reputation. Ph.D. thesis, 2007. Adviser-Barber, Suzanne.

11. Fullam, Karen K., Tomas B. Klos, Guillaume Muller, Jordi Sabater, Andreas
Schlosser, Zvi Topol, K. Suzanne Barber, Jeffrey S. Rosenschein, Laurent Ver-
couter, and Marco Voss. “A Specification of the Agent Reputation and Trust
(ART) Testbed: Experimentation and Competition for Trust in Agent Societies”.
Autonomous Agents and Multiagent Systems ’05: Proceedings of the Fourth In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems,
512–518. 2005.

85

12. Hansen, Eric A., Daniel S. Bernstein, and Shlomo Zilberstein. “Dynamic Pro-
gramming for Partially Observable Stochastic Games”. Association for the Ad-
vancement of Artificial Intelligence, 709–715. 2004.

13. Kaelbling, Leslie P., Michael L. Littman, and Anthony R. Cassandra. “Planning
and Acting in Partially Observable Stochastic Domains”. Artificial Intelligence,
101:99–134, 1998.

14. Montgomery, Douglas C. Design and Analysis of Experiments. 2004.

15. R., Falcone, Pezzulo G., and Castelfranchi C. “Quantifying Belief Credibility for
Trust-based Decision”. Proceedings of the Autonomous Agents and Multi-Agent
Systems-02 Workshop on ”Deception, Fraud and Trust in Agent Societies”, 41–48.
2002.

16. Rathnasabapathy, Bharaneedharan, Prashant Doshi, and Piotr J. Gmytrasiewicz.
“Exact Solutions of Interactive POMDPs Using Behavioral Equivalence”. Au-
tonomous Agents and Multiagent Systems, 1025–1032. 2006.

17. Ray, Indrajit and Sudip Chakraborty. “A Vector Model of Trust for Developing
Trustworthy Systems.” European Symposium on Research in Computer Security,
volume 3193 of Lecture Notes in Computer Science, 260–275. 2004.

18. Rettinger, Achim, Matthias Nickles, and Volker Tresp. “Learning Initial Trust
Among Interacting Agents”. Cooperative Information Agents, volume 4676 of
Lecture Notes in Computer Science, 313–327. 2007.

19. Roy, Nicholas, Geoffrey J. Gordon, and Sebastian Thrun. “Finding Approximate
POMDP solutions Through Belief Compression”. Journal of Artificial Intelligence
Research, 23:1–40, 2005.

20. Russell, Stuart Jonathan and Peter Norvig. Artificial Intelligence: A Modern
Approach. 2003.

21. Seuken, Sven and Shlomo Zilberstein. “Formal Models and Algorithms for De-
centralized Decision Making Under Uncertainty”. Journal of Autonomous Agents
and Multiagent Systems, 17:190–250, 2008.

22. Song, Weihua, Vir V. Phoha, and Xin Xu. “An Adaptive Recommendation Trust
Model in Multiagent System”. Intelligent Agent Technology, 462–465. 2004.

23. Szer, Daniel, Franois Charpillet, and Shlomo Zilberstein. “MAA*: A Heuristic
Search Algorithm for Solving Decentralized POMDPs”. Uncertainty in Artificial
Intelligence, 576–590. 2005.

24. Wang, Yonghong and Munindar P. Singh. “Trust Representation and Aggrega-
tion in a Distributed Agent System”. Proceedings of the Twenty-First National
Conference on Artificial Intelligence and the Eighteenth Innovative Applications
of Artificial Intelligence Conference, 16–20. 2006.

86

25. Wong, H. Chi and Katia P. Sycara. “Adding Security and Trust to Multiagent
Systems”. Applied Artificial Intelligence, 14:927–941, 2000.

26. Wu, Chao, Ming Jun Xin, and Wei Hua Li. “An Approach to Dynamic Model
Combination on Solving Decision-Making Problem”. Proceedings of the 2006 In-
stitute of Electrical and Electronics Engineers Asia-Pacific Conference on Services
Computing, 629–634. 2006.

87

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

18–06–2009 Master’s Thesis June 2007 — June 2009

The Trust-based Interactive
Partially Observable

Markov Decision Process

08-221

Richard S. Seymour, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/09-09

AFRL/RYTC (Juan M. Carbonell)
2241 Avionics Circle
Area B, Bldg 620
Wright Patterson Air Force Base, OH 45433
(937) 255–4709, ext 3157 juan.carbonell@wpafb.af.mil

AFRL/RYTC

Approved for public release; distribution is unlimited

Cooperative agent systems are designed so that each is working toward the same common good. The problem is that
software systems are complex and can be subverted by an adversary to either break the system or potentially worse,
create sneaky agents who are willing to cooperate when the stakes are low and take selfish, greedy actions when the
rewards rise. This research focuses on the ability of a group of agents to reason about the trustworthiness of each other
and make optimal decisions about whether to cooperate. A TI-POMDP is developed to model the trust interactions
between agents, enabling the agents to select the best course of action from the current state. The TI-POMDP is a novel
approach to multiagent cooperation based on an I-POMDP augmented with trust relationships. Experiments
demonstrate the TI-POMDP’s ability to accurately track the trust levels of agents with hidden agendas, providing the
agents the information needed to make decisions based on their level of trust and model of the environment. On average,
agents achieved rewards 3.8 times higher using the TI-POMDP model compared to a trust vector model.

multiagent system, trust modeling, partially observable Markov decision process

U U U UU 101

Gilbert Peterson, AFIT/ENG

(937)255–6565,ext4281;gilbert.peterson@afit.edu

